Skip to content

[GRL+ @ ICML 2020] PyTorch implementation for "Deep Graph Contrastive Representation Learning" (https://arxiv.org/abs/2006.04131v2)

License

Notifications You must be signed in to change notification settings

CRIPAC-DIG/GRACE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GRACE

model

This is the code for the Paper: deep GRAph Contrastive rEpresentation learning (GRACE).

For a thorough resource collection of self-supervised learning methods on graphs, you may refer to this awesome list.

Usage

Train and evaluate the model by executing

python train.py --dataset Cora

The --dataset argument should be one of [ Cora, CiteSeer, PubMed, DBLP ].

Requirements

  • torch 1.4.0
  • torch-geometric 1.5.0
  • sklearn 0.21.3
  • numpy 1.18.1
  • pyyaml 5.3.1

Install all dependencies using

pip install -r requirements.txt

If you encounter some problems during installing torch-geometric, please refer to the installation manual on its official website.

Citation

Please cite our paper if you use the code:

@inproceedings{Zhu:2020vf,
  author = {Zhu, Yanqiao and Xu, Yichen and Yu, Feng and Liu, Qiang and Wu, Shu and Wang, Liang},
  title = {{Deep Graph Contrastive Representation Learning}},
  booktitle = {ICML Workshop on Graph Representation Learning and Beyond},
  year = {2020},
  url = {http://arxiv.org/abs/2006.04131}
}

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy