Skip to content

Can we predict the age and gender of someone given a picture of their face ?

License

Notifications You must be signed in to change notification settings

CVxTz/face_age_gender

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

face_age_gender

Data : https://www.openu.ac.il/home/hassner/Adience/data.html

Description of the approach : https://medium.com/@CVxTz/predicting-apparent-age-and-gender-from-face-picture-keras-tensorflow-a99413d8fd5e

requirements : Keras, tensorflow, numpy, PIL, cv2

Predicting apparent Age and Gender from face picture : Keras + Tensorflow

Source : https://www.openu.ac.il/home/hassner/Adience/data.html

Predicting the apparent age and gender from a picture is a very interesting problem from a technical point of view but can also be very useful when applied to better understand consumer segments or a user base for example. It can be used to infer the age or gender of a user and use this information to make personalized products and experiences for each user.

In this post we will train a model to predict those attributes given a face picture.

Data :

We use data from https://www.openu.ac.il/home/hassner/Adience/data.html which is a dataset of face photos in the wild that are labeled into 8 age groups (0–2, 4–6, 8–13, 15–20, 25–32, 38–43, 48–53, 60-) and into 2 gender classes.
There are around 26,580 images (with missing labels in some cases) that are pre-split into 5 folds.

Existing results :

As this dataset is usually used as a benchmark for this type of tasks in many research papers, I was able to find many prior accuracy results for apparent age and gender prediction =>

[1] https://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf
Gender : 76.1±0.9
Age : 45.1±2.6

[2] https://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf
Gender : 86.8±1.4
Age : 50.7±5.1

[3] https://arxiv.org/pdf/1702.04280.pdf
Gender : 91
Age : 61.3±3.7

Preprocessing :

Faces are cropped and aligned using this tool : https://www.openu.ac.il/home/hassner/Adience/code.html#inplanealign

Data augmentation :

We use Random shift, Zoom, Horizontal Flip as a form of data augmentation to create synthetic examples used during training to improve the generalization of the model.

Model :

We use a Resnet architecture pre-trained on ImageNet :

Resnet ( Deep Residual Networks ) are an architecture that reduces the under-fitting and optimization issues that occur in deep neural networks.

Residual Block : https://arxiv.org/pdf/1512.03385.pdf

Results :

We train the model 3 times for each fold and average the predictions and get the following results :
Gender : 89.4±1.4
Age : 57.1±5.3
Those results are better than [1] and [2] probably because of the bagging and the pretrained weights but worse than [3] probably because Sighthound Inc used a bigger and internal Faces dataset for pretraining.

Code to reproduce the results can be found at : https://github.com/CVxTz/face_age_gender

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy