Skip to content

GXNU-ZhongLab/EVPTrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[AAAI'2024] - EVPTrack

The official implementation for the AAAI 2024 paper [Explicit Visual Prompts for Visual Object Tracking].

[Models], [Raw Results], [Training logs]

Highlights

🌟 New Explicit Visual Prompts-base Tracking Framework

Framework

EVPTrack is a simple and high performance tracker. It achieves SOTA performance on multiple benchmarks by utilizing spatio-temporal and multi-scale template information.

🌟 Strong Performance

Tracker GOT-10K (AO) LaSOT (AUC) TrackingNet (AUC) LaSOT_ext (AUC) UAV123 (AUC) TNL2K (AUC)
EVPTrack-384 76.6 72.7 84.4 53.7 70.9 59.1
EVPTrack-224 73.3 70.4 83.5 48.7 70.2 57.5

Install the environment

conda create -n evptrack python=3.8
conda activate evptrack
bash install.sh

Data Preparation

Put the tracking datasets in ./data. It should look like:

${PROJECT_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Set project paths

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Training

Download pre-trained MAE HiViT-Base weights and put it under $PROJECT_ROOT$/pretrained_networks (different pretrained models can also be used, see MAE for more details).

python tracking/train.py \
--script evptrack --config EVPTrack-full-224 \
--save_dir ./output \
--mode multiple --nproc_per_node 4 \
--use_wandb 0

Replace --config with the desired model config under experiments/evptrack.

We use wandb to record detailed training logs, in case you don't want to use wandb, set --use_wandb 0.

Test and Evaluation

  • LaSOT or other off-line evaluated benchmarks (modify --dataset correspondingly)
python tracking/test.py --tracker_param EVPTrack-full-224 --dataset lasot --threads 8 --num_gpus 4
python tracking/analysis_results.py # need to modify tracker configs and names
  • GOT10K-test
python tracking/test.py  --tracker_param EVPTrack-full-224 --dataset got10k --threads 8 --num_gpus 4
  • TrackingNet
python tracking/test.py  --tracker_param EVPTrack-full-224 --dataset trackingnet --threads 8 --num_gpus 4

Test FLOPs, and Speed

Note: The speeds reported in our paper were tested on a single RTX2080Ti GPU.

python tracking/profile_model.py --script evptrack --config baseline

Acknowledgments

  • Thanks for the OSTrack and PyTracking library, which helps us to quickly implement our ideas.

Citation

If our work is useful for your research, please consider citing:

@inproceedings{shi2024evptrack,
  title={Explicit Visual Prompts for Visual Object Tracking}, 
  author={Liangtao Shi and Bineng Zhong and Qihua Liang and Ning Li and Shengping Zhang and Xianxian Li},
  booktitle={AAAI},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy