Skip to content

Training Deep Neural Networks for Wireless Resource Management

Notifications You must be signed in to change notification settings

Haoran-S/TSP-DNN

Repository files navigation

Learning to optimize: Training deep neural networks for wireless resource management.

Python code to reproduce our works on DNN research for SPAWC 2017.

Demo.py contains the whole process from data generation, training, testing to plotting for 10 users' IC case, even though such process done on a small dataset of 25000 samples, 94% accuracy can still be easily attained in less than 100 iterations.

In test.py, we do the testing stage for Table I: Gaussian IC case in the paper, the testing are based on the pre-trained models. To train models from scratch, please follow the instructions in the paper and read the demo.py for reference.

All codes have been tested successfully on Python 3.6.0.

Setup

  • Install python 3.6

Running application

  1. Install pip dependencies
pip install -r requirements.txt
  1. run the python files
python3 demo.py
python3 test.py

References: [1] Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nikos D. Sidiropoulos, "Learning to Optimize: Training Deep Neural Networks for Interference Management," in IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, 15 Oct.15, 2018.


June 2019. Add files to generate the IMAC model in the IMAC_model folder.


Jan. 2021. Thanks @RameshPaul for providing the up-to-date TensorFlow 2 setup!


[Update] Welcome to check out our recent work on "Learning to Continuously Optimize Wireless Resource In Episodically Dynamic Environment"

paper available at https://arxiv.org/abs/2011.07782 (short version to appear in ICASSP 2021)

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy