Skip to content

MS Yang, A robust EM clustering algorithm for Gaussian mixture models, Pattern Recognit., 45 (2012), pp. 3950-3961

Notifications You must be signed in to change notification settings

HongJea-Park/robust_EM_for_gmm

Repository files navigation

A Robust EM Clustering Algorithm for Gaussian Mixture Models

Description

Python implementation of Robust EM Clustering for Gaussian Mixture Models[1]. (Click here to view the paper for more detail.)


  • robustgmm.robustgmm

    Scikit-learn API style for Robust GMM

  • robustgmm.generator

    Generator for synthetic data from mixture of gaussian.


For more detail to use, see the example below or paper_example.py

  • Reference

    MS Yang, A robust EM clustering algorithm for gaussian mixture models, Pattern Recognit., 45 (2012), pp. 3950-3961


Install

  1. Install from PyPI

    pip install robustgmm
  2. Install from Github

    pip install git+https://github.com/HongJea-Park/robust_EM_for_gmm.git

Example

All examples are conducted to compare with the experimental results of the paper.

# For more detail, refer ./test/paper_example.py
import numpy as np

from robustgmm import RobustGMM
from robustgmm import Generator_Multivariate_Normal


# Generate data from 2 multivariate normal distribution with fixed random seed
np.random.seed(0)
real_means = np.array([[.0, .0], [20, .0]])
real_covs = np.array([[[1, .0], [.0, 1]],
                      [[9, .0], [.0, 9]]])
mix_prob = np.array([.5, .5])
generator = Generator_Multivariate_Normal(means=real_means,
                                          covs=real_covs,
                                          mix_prob=mix_prob)
X = generator.get_sample(800)

# GMM using robust EM Algorithm
rgmm = RobustGMM()
rgmm.fit(X)

Figures for each examples in paper

  1. Example 1

    example1-1 example1-2

  2. Example 2

    example2-1-1 example2-1-2 example2-2-1 example2-2-2

  3. Example 3

    example3-1 example3-2

  4. Example 4

    example4

  5. Example 5

    example5-1 example5-2

  6. Example 6

    example6-1 example6-2

  7. Example 7

    example7

  8. Computational time cost

    timecost

About

MS Yang, A robust EM clustering algorithm for Gaussian mixture models, Pattern Recognit., 45 (2012), pp. 3950-3961

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy