Live Demo → https://laptop-cost-evaluation-project.onrender.com/
A fast, user-friendly web app that instantly predicts a laptop’s market price from key specs like brand, CPU, RAM, storage, and more.
- 🚀 Key Features
- 🗂 Project Structure
- ⚙️ Installation & Setup
- 🏃 Usage
- 📊 Data & Analysis
- 📋 Requirements.txt
- ☁️ Deployment
- 🔮 Future Work & Ideas
- 🤝 Acknowledgments
- Instant market cost estimation via a clean, single-page form
- Supports 16 categorical inputs + hidden defaults for ratings & reviews
- CPU-only TensorFlow backend for lightweight inference
- Live INR ↔ USD conversion on the client side
- Portable: runs locally (Windows/WSL/macOS) or on Render with zero-config
.
├── app.py
├── laptop_data.csv
├── Laptop_Regression.ipynb
├── README.md
├── requirements.txt
├── model
│ ├── laptop_cost_model.h5
│ ├── meta.json
│ └── preprocessor.joblib
└── static
├── css
│ └── style.css
├── icon
│ └── laptop_icon.png
├── img
│ └── bg.jpg
└── js
└── predict.js
Download and Install python 3.10.11 from this link and Add the path: C:\Users\user(name)\AppData\Local\Programs\Python\Python310\python.exe to Environment Variable (PATH).
py -3.10 -m venv tempenv; .\tempenv\Scripts\Activate.ps1
python3.10 -m venv tempenv && source tempenv/bin/activate
py -3.10 -m venv tempenv && .\tempenv\Scripts\activate.bat
- Activate your virtual environment
- Install dependencies:
pip install -r requirements.txt
- Run the app:
python app.py
- Open your browser at http://localhost:5000
- laptop_data.csv
Raw dataset of about 1k rows of laptops with specs & prices. - Laptop_Regression.ipynb
Exploratory Data Analysis, feature engineering, model training & evaluation.
Feel free to explore or extend the notebook with new algorithms.
# Required for webapp to run
setuptools>=65.0.0
wheel>=0.40.0
Flask==3.1.1
joblib==1.5.1
numpy==2.1.3
pandas==2.3.0
scikit-learn==1.7.0
tensorflow-cpu==2.19.0
# Optional if you want to experiment with Laptop_Regression.ipynb
# lightgbm==4.1.0
# xgboost==1.7.6
# catboost==1.2
# matplotlib==3.7.2
# seaborn==0.12.2
This project is hosted on Render, with following adjustments:
- Set
PYTHON_VERSION=3.10.11
in Render’s Environment tab - Bind to the
PORT
env var inapp.py
(fallback to 5000 locally) - Static assets served via
{{ url_for('static', …) }}
for correct routing PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))
for relative path in app.py
- Convert the Keras model to TensorFlow Lite for ultra-light inference
- Add real-time currency rates via a free API
- Build a comparison view: show competitor models & price deltas
- Expose a public REST API endpoint for batch predictions
- Dataset & inspiration provided by Kaggle
- Free hosting and auto-deploy courtesy of Render
- Interactive development environment powered by Google Colab
Feel free to ⭐ the repo, file issues, or submit PRs for new features!