Skip to content

Marvin-wen/QoS-Prediction-Algorithm-library

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

引言

QoS预测是服务计算中非常热门的话题,随着研究的深入,越来越多高效、准确的QoS预测方法被提出。但众多方法实现标准各异,这导致了当一个新方法提出时,很难在同一尺度下与先前的方法进行公平地竞争。本项目旨在复现历来被人熟知的QoS预测方法,并统一初始化参数、统一训练数据结构、统一训练方法,构建一个内容丰富、使用简单的QoS预测算法库。

代办事项

Memory-Based 完成情况 论文 公式
UMEAN
IMEAN
UPCC Shao L, Zhang J, Wei Y, et al. Personalized qos prediction forweb services via collaborative filtering[C]//Ieee international conference on web services (icws 2007). IEEE, 2007: 439-446.
IPCC MLASarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. 2001: 285-295.
WSRec(UIPCC)
NRCF
RACF
Model-Based 完成情况 论文 公式
MF Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. $ \min {\mathbf{p}, \mathbf{q}} \frac{1}{2} \sum{(u, i) \in \mathbf{O}}\left|r_{u, i}-\mathbf{p}{u} \mathbf{q}{i}^{T}\right|^{2}+\frac{1}{2} \lambda\left(\left|\mathbf{p}{u}\right|^{2}+\left|\mathbf{q}{i}\right|^{2}\right)$
PMF $E=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left|U_{i}\right|{F r o}^{2}+\frac{\lambda{V}}{2} \sum_{j=1}^{M}\left|V_{j}\right|_{F r o}^{2}$
NMF Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. $ \begin{aligned} &\min {\mathbf{p}, \mathbf{q}} \frac{1}{2} \sum{(u, i) \in \mathbf{O}}\left|r_{u, i}-\mathbf{p}{u} \mathbf{q}{i}^{T}\right|^{2} \ &\text { s.t. } \mathbf{p}{u, \cdot}>0, \mathbf{q}{i, \cdot}>0 \end{aligned}$
MLP
NewMF
GMF
Federated-Based 完成情况 算法介绍/论文/公式
FedMF
FedNMF
杂项 完成情况
注释
训练日志
复杂度优化 ⏱️
训练数据保存
支持GPU
训练可视化 ⏱️

Baseline

Reference

pytorch-styleguide

About

一个计划复现主流QoS预测算法的仓库

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy