Skip to content

Pegah-Ardehkhani/Statistics-and-Probability-in-Python

Repository files navigation

Statistics and Probability in Python 📊 📈 license releases

Note: This repository is still developing.

Table of content ✍️

Chapter 1: Special Continuous Random Variables Open In Colab nbviewer

  • 1.1. Normal (Gaussian) Distribution
  • 1.2. Chi-square Distribution
  • 1.3. T-student Distribution
  • 1.4. Fisher Distribution
  • 1.5. Continuous Uniform Distribution
  • 1.6. Exponential Distribution
  • 1.7. Gamma Distribution
  • 1.8. Beta Distribution
  • 1.9. Weibull Distribution
  • 1.10. Cauchy Distribution
  • 1.11. Laplace Distribution
  • 1.12. Logistic Distribution

Chapter 2: Special Discrete Random Variables Open In Colab nbviewer

  • 2.1. Bernoulli Distribution
  • 2.2. Binomial Distribution
  • 2.3. Negative Binomial (Pascal) Distribution
  • 2.4. Geometric Distribution
  • 2.5. Poisson Distribution
  • 2.6. Discrete Uniform Distribution
  • 2.7. Hypergeometric Distribution

Chapter 3: Confidence Intervals Open In Colab nbviewer

  • 3.1. Confidence Interval for the Mean of a Normal Population
    • 3.1.1. Known Standard Deviation
    • 3.1.2. Unknown Standard Deviation
  • 3.2. Confidence Interval for the Variance of a Normal Population
    • 3.2.1. Unknown Mean of the Population
    • 3.2.2. Known Mean of the Population
  • 3.3. Confidence Interval for the Difference in Means of Two Normal Population
    • 3.3.1. Known Variances
    • 3.3.2. Unknown but Equal Variances
  • 3.4. Confidence Interval for the Ratio of Variances of Two Normal Populations
  • 3.5. Confidence Interval for the Mean of a Bernoulli Random Variable

Chapter 4: Parametric Hypothesis Testing Open In Colab nbviewer

  • 4.1. Introduction
  • 4.2. Test Concerning the Mean of a Normal Population
    • 4.2.1. Known Standard Deviation
    • 4.2.2. Unknown Standard Deviation
  • 4.3. Test Concerning the Equality of Means of Two Normal Populations
    • 4.3.1. Known Variances
    • 4.3.2. Unknown but Equal Variances
  • 4.4. Paired t-test
  • 4.5. Test Concerning the Variance of a Normal Population
  • 4.6. Test Concerning the Equality of Variances of Two Normal Populations
  • 4.7. Test Concerning P in Bernoulli Populations
  • 4.8. Test Concerning the Equality of P in Two Bernoulli Populations

Chapter 5: Statistical Hypothesis Testing Open In Colab nbviewer

  • 5.1. Normality Tests
    • 5.1.1. Shapiro-Wilk Test
    • 5.1.2. D’Agostino’s Test
    • 5.1.3. Anderson-Darling Test
  • 5.2. Correlation Tests
    • 5.2.1. Pearson’s Correlation Coefficient
    • 5.2.2. Spearman’s Rank Correlation
    • 5.2.3. Kendall’s Rank Correlation
    • 5.2.4. Chi-Squared Test
  • 5.3. Stationary Tests
    • 5.3.1. Augmented Dickey-Fuller Unit Root Test
    • 5.3.2. Kwiatkowski-Phillips-Schmidt-Shin Test
  • 5.4. Other Tests
    • 5.4.1. Mann-Whitney U-Test
    • 5.4.2. Wilcoxon Signed-Rank Test
    • 5.4.3. Kruskal-Wallis H Test
    • 5.4.4. Friedman Test

Chapter 6: Regression Open In Colab nbviewer

  • 6.1. Introduction
  • 6.2. Least Squares Estimators of the Regression Parameters
  • 6.3. Statistical Inferences about the Regression Parameters
    • 6.3.1. Inferences Concerning B
      • 6.3.1.1. Known Variance
      • 6.3.1.2. Unknown Variance
    • 6.3.2. Inferences Concerning A
      • 6.3.2.1. Unknown Variance
    • 6.3.3. T-tests for Regression Parameters with statsmodels
    • 6.3.4. F-statistic for Overall Significance in Regression
  • 6.4. Confidence Intervals Concerning Regression Models
    • 6.4.1. Confidence Interval for B
      • 6.4.1.1. Known Variance
      • 6.4.1.2. Unknown Variance
    • 6.4.2. Confidence Interval for A
      • 6.4.2.1. Unknown Variance
    • 6.4.3. Confidence Interval for A+Bx
      • 6.4.3.1. Unknown Variance
    • 6.4.4. Prediction Interval of a Future Response
  • 6.5. Residuals
    • 6.5.1. Regression Diagnostic
    • 6.5.2. Multicollinearity

Chapter 7: Analysis of Variance (ANOVA) Open In Colab nbviewer

  • 7.1. One-Way Analysis of Variance
    • 7.1.1. Equal Sample Sizes
    • 7.1.2. Unequal Sample Sizes
  • 7.2. Two-Way Analysis of Variance
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy