Skip to content

Qengineering/TensorFlow_Lite_SSD_RPi_64-bits

Repository files navigation

output image Find this example on our SD-image

TensorFlow_Lite_SSD_RPi_64-bits

output image

TensorFlow Lite SSD running at 24 FPS on a bare Raspberry Pi 4 64-OS

License

A fast C++ implementation of TensorFlow Lite on a bare Raspberry Pi 4 64-bit OS. Once overclocked to 1925 MHz, the app runs a whopping 24 FPS! Without any hardware accelerator, just you and your Pi.

https://arxiv.org/abs/1611.10012
Training set: COCO
Size: 300x300
Frame rate V1 Lite : 28 FPS (RPi 4 @ 1925 MHz - 64 bits Bullseye OS)
Frame rate V1 Lite : 17 FPS (RPi 4 @ 2000 MHz - 32 bits OS) see 32-OS

Special made for a Raspberry Pi 4 see Q-engineering deep learning examples

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/TensorFlow_Lite_SSD_RPi_64-bits/archive/refs/heads/master.zip
$ unzip -j master.zip
Remove master.zip and README.md as they are no longer needed.
$ rm master.zip
$ rm README.md

Your MyDir folder must now look like this:
James.mp4
COCO_labels.txt
detect.tflite
TestTensorFlow_Lite.cpb
MobileNetV1.cpp

Run TestTensorFlow_Lite.cpb with Code::Blocks. More info or
if you want to connect a camera to the app, follow the instructions at Hands-On.
I fact you can run this example on any aarch64 Linux system.

See the movie at: https://vimeo.com/393889226


paypal

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy