Skip to content

QingyongHu/SQN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

arXiv GitHub Stars visitors License CC BY-NC-SA 4.0

SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds (ECCV2022)

This is the official repository of the Semantic Query Network (SQN). For technical details, please refer to:

SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
Qingyong Hu, Bo Yang, Guangchi Fang , Ales Leonardis, Yulan Guo, Niki Trigoni , Andrew Markham.
[Paper] [Video]

(1) Setup

This code has been tested with Python 3.5, Tensorflow 1.11, CUDA 9.0 and cuDNN 7.4.1 on Ubuntu 16.04/Ubuntu 18.04.

  • Clone the repository
git clone --depth=1 https://github.com/QingyongHu/SQN && cd SQN
  • Setup python environment
conda create -n sqn python=3.5
source activate sqn
pip install -r helper_requirements.txt
sh compile_op.sh

(2) Training (Semantic3D as example)

First, follow the RandLA-Net instruction to prepare the dataset, and then manually change the dataset path here.

  • Start training with weakly supervised setting:
python main_Semantic3D.py --mode train --gpu 0 --labeled_point 0.1%
  • Evaluation:
python main_Semantic3D.py --mode test --gpu 0 --labeled_point 0.1%

Quantitative results achieved by our SQN:

2 z
2 z

(3) Sparse Annotation Demo

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{hu2021sqn,
  title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds},
  author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
  booktitle={European Conference on Computer Vision},
  year={2022}
}

Related Repos

  1. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds GitHub stars
  2. SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey GitHub stars
  3. 3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds GitHub stars
  4. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration GitHub stars
  5. SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds GitHub stars
  6. Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds GitHub stars
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy