Skip to content

Quantco/dataframely

Repository files navigation


dataframely β€” A declarative, πŸ»β€β„οΈ-native data frame validation library

CI Nightly CI conda-forge pypi-version python-version codecov

πŸ—‚ Table of Contents

πŸ“– Introduction

Dataframely is a Python package to validate the schema and content of polars data frames. Its purpose is to make data pipelines more robust by ensuring that data meets expectations and more readable by adding schema information to data frame type hints.

πŸ’Ώ Installation

You can install dataframely using your favorite package manager, e.g., pixi or pip:

pixi add dataframely
pip install dataframely

🎯 Usage

Defining a data frame schema

import dataframely as dy
import polars as pl

class HouseSchema(dy.Schema):
    zip_code = dy.String(nullable=False, min_length=3)
    num_bedrooms = dy.UInt8(nullable=False)
    num_bathrooms = dy.UInt8(nullable=False)
    price = dy.Float64(nullable=False)

    @dy.rule()
    def reasonable_bathroom_to_bedroom_ratio() -> pl.Expr:
        ratio = pl.col("num_bathrooms") / pl.col("num_bedrooms")
        return (ratio >= 1 / 3) & (ratio <= 3)

    @dy.rule(group_by=["zip_code"])
    def minimum_zip_code_count() -> pl.Expr:
        return pl.len() >= 2

Validating data against schema

import polars as pl

df = pl.DataFrame({
    "zip_code": ["01234", "01234", "1", "213", "123", "213"],
    "num_bedrooms": [2, 2, 1, None, None, 2],
    "num_bathrooms": [1, 2, 1, 1, 0, 8],
    "price": [100_000, 110_000, 50_000, 80_000, 60_000, 160_000]
})

# Validate the data and cast columns to expected types
validated_df: dy.DataFrame[HouseSchema] = HouseSchema.validate(df, cast=True)

See more advanced usage examples in the documentation.

About

A declarative, πŸ»β€β„οΈ-native data frame validation library.

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Contributors 16

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy