Skip to content

UniSerj/Random-Projection-Filters

Repository files navigation

Adversarial Robustness via Random Projection Filters

Environment

  • torch 1.7.1
  • torchvision 0.8.2
  • torchattacks 3.2.6

Training of RPF

  • To train a ResNet18 with RPF on CIFAR-10:
python train.py --network ResNet18 --dataset cifar10 --attack_iters 10 --lr_schedule multistep --epochs 200 --adv_training --rp --rp_block -1 -1 --rp_out_channel 48 --rp_weight_decay 1e-2 --save_dir resnet18_c10_RPF
  • To train a ResNet50 with RPF on ImageNet:
python train_imagenet.py --pretrained --lr 0.02 --lr_schedule cosine --batch_size 1024 --epochs 90 --adv_train --rp --rp_block -1 -1 --rp_out_channel 48 --rp_weight_decay 1e-2 --save_dir resnet50_imagenet_RPF

Evaluation of RPF

  • To evaluate the performance of ResNet18 with RPF on CIFAR-10:
python evaluate.py --dataset cifar10 --network ResNet18 --rp --rp_out_channel 48 --rp_block -1 -1 --save_dir eval_r18_c10 --pretrain [path_to_model]
  • To evaluate the performance of ResNet50 with RPF on ImageNet:
python train_imagenet.py --evaluate --rp --rp_out_channel 48 --save_dir eval_r50_imagenet --eval_model_path [path_to_model]

Pretrained Models

Pretrained models are provided in google-drive.

About

[CVPR 2023] Adversarial Robustness via Random Projection Filters

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy