Skip to content

VirtualRoyalty/PointCloudSegmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PointCloudSegmentation


CI simple_checks



Project structure:

├───docker-env/
├───obstacle-detection/
│   ├───dataset/
│   │   └───sequences/
│   │       └───00/
│   │           ├───clusters/
│   │           ├───labels/
│   │           └───velodyne/
|   ├───model/
|   |
│   ├───examples/
│   │   
│   ├───pipeline/
│   │  
│   └───scripts/
│       
└───visualization/

How to dockerize this:


  • In base-notebook/ folder start Docker and build an image: $ docker build -t jupyter .
  • After that you can verify a successful build by running: $ docker images
  • Then start container by running:

    $ docker run -it --rm -p 8888:8888 -v /path/to/obstacle-detection:/home/jovyan/work jupyter

    NOTE: on Windows you need to convert your path into a quasi-Linux format (e.g. //c/path/to/obstacle-detection). More details here
    Also, if you want to use drive D:/ you need to check whether it is mounted or not and if not mount it manually. More details here if you use Docker toolbox

  • After correct running you will see URL to access jupyter, e.g.:

    httр://127.0.0.1:8888?token=0cccd15e74216ed2dbe681738ed0f9c78bf65515e94f27a8

  • To access jupyter you need to go for Docker IP:8888?token=xxxx...
    ( e.g. httр://192.168.99.100:8888/?token=0cccd15e74216ed2dbe681738ed0f9c78bf65515e94f27a8)

  • To enter a docker container run $ docker exec -it *CONTAINER ID* bash (find out ID by running $ docker ps)

Pre-trained Models

References and useful links:



Dataset:

  1. Web-site Semantic KITTI
  2. Paper Semantic KITTI


Segmentation:

  1. Segmentation approaches Point Clouds
  2. Also about point cloud segmentation
  3. PointNet
  4. PointNet++ from Stanford
  5. PointNet++
  6. RangeNet++


Obstacle detection:

  1. Obstacle Detection and Avoidance System for Drones
  2. 3D Lidar-based Static and Moving Obstacle Detection
  3. USER-TRAINABLE OBJECT RECOGNITION SYSTEMS
  4. Real-Time Plane Segmentation and Obstacle Detection


Useful Github links:

  1. https://github.com/PRBonn/semantic-kitti-api
  2. https://github.com/jbehley/point_labeler
  3. https://github.com/daavoo/pyntcloud
  4. https://github.com/strawlab/python-pcl
  5. https://github.com/kuixu/kitti_object_vis
  6. https://github.com/lilyhappily/SFND-P1-Lidar-Obstacle-Detection
  7. https://github.com/kcg2015/lidar_ground_plane_and_obstacles_detections
  8. https://github.com/enginBozkurt/LidarObstacleDetection

Releases

No releases published

Packages

No packages published

Contributors 5

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy