Skip to content

WayneDW/Non-reversible-Parallel-Tempering-for-Deep-Posterior-Approximation

Repository files navigation

Non-reversible Parallel Tempering for Deep Posterior Approximation

A user-friendly parallel tempering algorithm Link that tracks the non-reversibility property with an optimal round trip time in deep learning. We adopt stochastic gradient descent (SGD) with large and constant learning rates as user-friendly exploration kernels.

@inproceedings{NTPT_big_data,
  title={Non-reversible Parallel Tempering for Deep Posterior Approximation},
  author={Wei Deng and Qian Zhang and Qi Feng and Faming Liang and Guang Lin},
  booktitle={Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI'23)},
  year={2023}
}

Requirement

Uncertainty Estimation and Optimization on CIFAR100: ResNet20 with batch size 256

Pretrain models for ensemble (mSGDxP10) and parallel tempering (DEO-mSGD×P10 and DEO star-mSGD×P10)

$ python bayes_init.py -model resnet -depth 20 -sn 300

Run 10 short parallel chains with 500 epochs

Run the standard ensemble (mSGDxP10), i.e. run 10 parallel chains 500 epochs based on momentum SGD

$ python bayes_cnn.py -sn 500 -type vanilla -model resnet -depth 20 -chains 10 -lr_min 0.005

Run DEO-mSGD×P10 with a window size of 1

$ python bayes_cnn.py -sn 500 -type PT -model resnet -depth 20 -chains 10 -lr_min 0.005 -lr_max 0.02 -swap_rate 5e-3 -window_custom 1

Run DEO star-mSGD×P10 based on the optimal window size of 626

$ python bayes_cnn.py -sn 500 -type PT -model resnet -depth 20 -chains 10 -lr_min 0.005 -lr_max 0.02 -swap_rate 5e-3 -window_custom 626

Run a long single chain with 5,000 chains

$ python bayes_cnn.py -sn 5000 -type cyc -data cifar100 -depth 20

Remark: changing the number of depth can easily reproduce the results for ResNet32 and ResNet56 models

About

Code for "Non-reversible Parallel Tempering for Deep Posterior Approximation (AAAI 2023)"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy