Skip to content

Zheng222/IDN-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IDN-tensorflow

[Original Caffe version]

Testing

  • Install Tensorflow 1.11, Matlab R2017a
  • Download Test datasets
  • Modify config.py (if you want to test x3 model on Set14, config.TEST.model_path = 'checkpoint_x3/model.ckpt' config.TEST.dataset = 'Set14') and test.py (scale = 3).
  • Run testing:
python test.py

Training

  • Download Training dataset
  • Modify config.py (if you want to train x4 model, config.TRAIN.hr_img_path = '/path/to/DIV2K_train_HR/' config.TRAIN.checkpoint_dir = 'checkpoint_x4/' config.VALID.hr_img_path = '/path/to/DIV2K_valid_HR/' config.VALID.lr_img_path = '/path/to/DIV2K_valid_LR_x4/') and train_SR.py (scale = 4)
  • Run training:
python train_SR.py

Note

This TensorFlow version is trained with DIV2K training dataset on RGB channels. Additionally, We modify the upsample layer to subpixel convolution (the original version is transposed convolution).

Results

Test_results

The following PSNR/SSIMs are evaluated on Matlab R2017a and the code can be referred to Evaluate_PSNR_SSIM.m.

Training dataset Scale Set5 Set14 B100 Urban100
291 ×2 37.83 / 0.9600 33.30 / 0.9148 32.08 / 0.8985 31.27 / 0.9196
DIV2K ×2 37.85 / 0.9598 33.58 / 0.9178 32.11 / 0.8989 31.95 / 0.9266
291 ×3 34.11 / 0.9253 29.99 / 0.8354 28.95 / 0.8013 27.42 / 0.8359
DIV2K ×3 34.24 / 0.9260 30.27 / 0.8408 29.03 / 0.8038 27.99 / 0.8489
291 ×4 31.82 / 0.8903 28.25 / 0.7730 27.41 / 0.7297 25.41 / 0.7632
DIV2K ×4 31.99 / 0.8928 28.52 / 0.7794 27.52 / 0.7339 25.92 / 0.7801

Model Parameters

Scale Model size
×2 579,276
×3 587,931
×4 600,048

Citation

If you find IDN useful in your research, please consider citing:

@inproceedings{Hui-IDN-2018,
  title={Fast and Accurate Single Image Super-Resolution via Information Distillation Network},
  author={Hui, Zheng and Wang, Xiumei and Gao, Xinbo},
  booktitle={CVPR},
  pages = {723--731},
  year={2018}
}

About

Tensorflow implementation of IDN (CVPR 2018)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy