Skip to content

Package provides java implementation of self-organizing feature map (Kohonen map)

License

Notifications You must be signed in to change notification settings

chen0040/java-som

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

java-som

Package provides java implementation of self-organizing feature map (Kohonen map)

Build Status Coverage Status

Install

Add the following dependency to your POM file:

<dependency>
  <groupId>com.github.chen0040</groupId>
  <artifactId>java-som</artifactId>
  <version>1.0.2</version>
</dependency>

Usage

Spatial clustering using SOFM

The sample code below shows how to cluster a set of 2-D points (c1, c2) in space using SOFM:

DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
      .newInput("c1")
      .newInput("c2")
      .newOutput("designed")
      .end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
      .forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
      .forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
      .forColumn("designed").generate((name, index) -> 0.0)
      .end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
      .forColumn("c1").generate((name, index) -> rand(-4, -2))
      .forColumn("c2").generate((name, index) -> rand(-2, -4))
      .forColumn("designed").generate((name, index) -> 1.0)
      .end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 50);
data = positiveSampler.sample(data, 50);

System.out.println(data.head(10));

SOFM algorithm = new SOFM();
// create a 1x2 SOM grid for 2-clusters
algorithm.setColumnCount(2);
algorithm.setRowCount(1);

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
 DataRow tuple = learnedData.row(i);
 String clusterId = tuple.getCategoricalTargetCell("cluster");
 System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}

Image Segmentation (Clustering) using SOFM

The following sample code shows how to use SOFM to perform image segmentation:

BufferedImage img= ImageIO.read(FileUtils.getResource("1.jpg"));

DataFrame dataFrame = ImageDataFrameFactory.dataFrame(img);

SOFM cluster = new SOFM();
cluster.fit(dataFrame);

List<Integer> classColors = new ArrayList<Integer>();
for(int i=0; i < 5; ++i){
 for(int j=0; j < 5; ++j){
    classColors.add(ImageDataFrameFactory.get_rgb(255, rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)));
 }
}

BufferedImage segmented_image = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
for(int x=0; x < img.getWidth(); x++)
{
 for(int y=0; y < img.getHeight(); y++)
 {
    int rgb = img.getRGB(x, y);

    DataRow tuple = ImageDataFrameFactory.getPixelTuple(dataFrame, rgb);

    int clusterIndex = cluster.transform(tuple);

    rgb = classColors.get(clusterIndex % classColors.size());

    segmented_image.setRGB(x, y, rgb);
 }
}

About

Package provides java implementation of self-organizing feature map (Kohonen map)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy