Skip to content

deep-learning-algorithm/ResNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ResNet

Documentation Status standard-readme compliant Conventional Commits Commitizen friendly

ResNet算法实现

实现ResNet及后续版本,同时实现了相关模型:

  • ResNet v1/v2
  • DenseNet
CNN Architecture Data Type (bit) Model Size (MB) GFlops (1080Ti) Top-1 Acc(VOC 07+12) Top-5 Acc(VOC 07+12)
ResNet-18 32 44.607 3.641 89.98% 99.29%
ResNet-34 32 83.180 7.348 90.01% 99.29%
ResNet-34_v2 32 83.177 7.349 90.50% 99.29%
ResNet-50 32 97.492 8.223 89.37% 99.39%
ResNet-101 32 169.942 15.668 90.66% 99.35%
ResNet-101_v2 32 169.926 15.668 90.85% 99.48%
DenseNet-121 32 30.437 5.731 89.86% 99.20%

内容列表

背景

安装

文档工具依赖

# 文档工具依赖
$ pip install -r requirements.txt

python库依赖

$ cd py
$ pip install -r requirements.txt

用法

文档浏览

有两种使用方式

  1. 在线浏览文档:ResNet

  2. 本地浏览文档,实现如下:

    $ git clone https://github.com/zjZSTU/ResNet.git
    $ cd ResNet
    $ mkdocs serve
    

    启动本地服务器后即可登录浏览器localhost:8000

主要维护人员

  • zhujian - Initial work - zjZSTU

致谢

引用

@misc{he2015deep,
    title={Deep Residual Learning for Image Recognition},
    author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
    year={2015},
    eprint={1512.03385},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@misc{he2016identity,
    title={Identity Mappings in Deep Residual Networks},
    author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
    year={2016},
    eprint={1603.05027},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@misc{huang2016densely,
    title={Densely Connected Convolutional Networks},
    author={Gao Huang and Zhuang Liu and Laurens van der Maaten and Kilian Q. Weinberger},
    year={2016},
    eprint={1608.06993},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@misc{pascal-voc-2007,
	author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
	title = "The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2007 {(VOC2007)} {R}esults",
	howpublished = "http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html"}

@misc{pascal-voc-2012,
	author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
	title = "The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2012 {(VOC2012)} {R}esults",
	howpublished = "http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html"}

参与贡献方式

欢迎任何人的参与!打开issue或提交合并请求。

注意:

许可证

Apache License 2.0 © 2020 zjZSTU

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy