Skip to content

Adding Hardware acceleration version of Queries 1 and 8 in csharp #274

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Refactored code for combining common part of queries 1 and 8
  • Loading branch information
Niharikadutta committed Sep 26, 2019
commit e2db3a56e79649436742af4acbb644735aee9079
79 changes: 25 additions & 54 deletions benchmark/csharp/Tpch/TpchFunctionalQueries.cs
Original file line number Diff line number Diff line change
Expand Up @@ -60,14 +60,8 @@ internal void Q1()
.Show();
}

internal void Q1a()
{
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
(price, discount) => VectorFunctions.ComputeDiscountPrice(price, discount));

Func<Column, Column, Column, Column> total = VectorUdf<DoubleArray, DoubleArray, DoubleArray, DoubleArray>(
(price, discount, tax) => VectorFunctions.ComputeTotal(price, discount, tax));

internal void Q1aCommon(Func<Column, Column, Column> discPrice, Func<Column, Column, Column, Column> total)
{
_lineitem.Filter(Col("l_shipdate") <= "1998-09-02")
.GroupBy(Col("l_returnflag"), Col("l_linestatus"))
.Agg(Sum(Col("l_quantity")).As("sum_qty"), Sum(Col("l_extendedprice")).As("sum_base_price"),
Expand All @@ -82,6 +76,17 @@ internal void Q1a()
.Show();
}

internal void Q1a()
{
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
(price, discount) => VectorFunctions.ComputeDiscountPrice(price, discount));

Func<Column, Column, Column, Column> total = VectorUdf<DoubleArray, DoubleArray, DoubleArray, DoubleArray>(
(price, discount, tax) => VectorFunctions.ComputeTotal(price, discount, tax));

Q1aCommon(discPrice, total);
}

internal void Q1ha()
{
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
Expand All @@ -90,18 +95,7 @@ internal void Q1ha()
Func<Column, Column, Column, Column> total = VectorUdf<DoubleArray, DoubleArray, DoubleArray, DoubleArray>(
(price, discount, tax) => VectorFunctionsIntrinsics.ComputeTotal(price, discount, tax));

_lineitem.Filter(Col("l_shipdate") <= "1998-09-02")
.GroupBy(Col("l_returnflag"), Col("l_linestatus"))
.Agg(Sum(Col("l_quantity")).As("sum_qty"), Sum(Col("l_extendedprice")).As("sum_base_price"),
Sum(discPrice(Col("l_extendedprice"), Col("l_discount"))).As("sum_disc_price"),
Sum(total(Col("l_extendedprice"), Col("l_discount"), Col("l_tax"))).As("sum_charge"),
Avg(Col("l_quantity")).As("avg_qty"),
Avg(Col("l_extendedprice")).As("avg_price"),
Avg(Col("l_discount")).As("avg_disc"),
Count(Col("l_quantity")).As("count_order")
)
.Sort(Col("l_returnflag"), Col("l_linestatus"))
.Show();
Q1aCommon(discPrice, total);
}

internal void Q2()
Expand Down Expand Up @@ -249,12 +243,9 @@ internal void Q8()
.Show();
}

internal void Q8a()
internal void Q8aCommon(Func<Column, Column, Column> discPrice)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can't Q8 call this as well?

{
Func<Column, Column> getYear = Udf<string, string>(x => x.Substring(0, 4));
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
(price, discount) => VectorFunctions.ComputeDiscountPrice(price, discount));

Func<Column, Column> getYear = Udf<string, string>(x => x.Substring(0, 4));
Func<Column, Column, Column> isBrazil = Udf<string, double, double>((x, y) => x == "BRAZIL" ? y : 0);

DataFrame fregion = _region.Filter(Col("r_name") == "AMERICA");
Expand Down Expand Up @@ -283,38 +274,18 @@ internal void Q8a()
.Show();
}

internal void Q8a()
{
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
(price, discount) => VectorFunctions.ComputeDiscountPrice(price, discount));
Q8aCommon(discPrice);
}

internal void Q8ha()
{
Func<Column, Column> getYear = Udf<string, string>(x => x.Substring(0, 4));
{
Func<Column, Column, Column> discPrice = VectorUdf<DoubleArray, DoubleArray, DoubleArray>(
(price, discount) => VectorFunctionsIntrinsics.ComputeDiscountPrice(price, discount));

Func<Column, Column, Column> isBrazil = Udf<string, double, double>((x, y) => x == "BRAZIL" ? y : 0);

DataFrame fregion = _region.Filter(Col("r_name") == "AMERICA");
DataFrame forder = _orders.Filter(Col("o_orderdate") <= "1996-12-31" & Col("o_orderdate") >= "1995-01-01");
DataFrame fpart = _part.Filter(Col("p_type") == "ECONOMY ANODIZED STEEL");

DataFrame nat = _nation.Join(_supplier, Col("n_nationkey") == _supplier["s_nationkey"]);

DataFrame line = _lineitem.Select(Col("l_partkey"), Col("l_suppkey"), Col("l_orderkey"),
discPrice(Col("l_extendedprice"), Col("l_discount")).As("volume"))
.Join(fpart, Col("l_partkey") == fpart["p_partkey"])
.Join(nat, Col("l_suppkey") == nat["s_suppkey"]);

_nation.Join(fregion, Col("n_regionkey") == fregion["r_regionkey"])
.Select(Col("n_nationkey"))
.Join(_customer, Col("n_nationkey") == _customer["c_nationkey"])
.Select(Col("c_custkey"))
.Join(forder, Col("c_custkey") == forder["o_custkey"])
.Select(Col("o_orderkey"), Col("o_orderdate"))
.Join(line, Col("o_orderkey") == line["l_orderkey"])
.Select(getYear(Col("o_orderdate")).As("o_year"), Col("volume"),
isBrazil(Col("n_name"), Col("volume")).As("case_volume"))
.GroupBy(Col("o_year"))
.Agg((Sum(Col("case_volume")) / Sum("volume")).As("mkt_share"))
.Sort(Col("o_year"))
.Show();
Q8aCommon(discPrice);
}

internal void Q9()
Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy