Skip to content

Work for Python Tkinter GUI application for numerical experiments of the dynamics of an isolated qubit. Versions 1 and 1.2.

Notifications You must be signed in to change notification settings

fridaligaias/QuGUI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

QuGUI V2.4 "QuPhiGUI" Abstract

Modified and extented version of the application. Includes 3D model of qubit orientation probability.

To introduce this new way of studying the qubit's dynamics, we have to consider what qualities can be described once the ' phase is known. Let's consider the following questions:

  1. Vertical motion (up/down)
  2. Motion along the equation axis (if there is, is it negative/positive?)
  3. Motion along the equation axis (if there is, is it negative/positive?)

Now, let's visualise a group, or better a beam of atoms, that are magnetic (iron, perhaps). Let's make it go through the gap in between the two ends of a horseshoe magnet. Can you imagine it?

In a classical situation the atoms would spread out and the range of the beam would 'enlarge'- due to their magnetism. However, this is not the case when it's done experimen- tally. Instead, the beam splits in two: the 'projection' along the equation axis is either 'up' or 'down' [50/50].

If a beam is put through a horseshoe magnet with an orientation towards the right [a C shape], a part of the beam will go "all the way up". If then, the same beam is consequently put through another horseshoe magnet with this time an upwards orientation [a U shape], the question changes, yet regardless of any previous results, the beam will go either right or left.

However, there's always a contact with classical mechanics, even if, in practice, the questions are always the same three: does the atom have a vertical orientation (up or down), one along the equation axis (positive or negative) or one along the equation axis (positive or negative).

The orientation of an object is always 'written' somewhere within it- the question is, how do we 'read' it? The answer lies within the state of the atom; if the state is completely unde- ned, it still has a probability of being up/down. The new value of theta, could perhaps have, 'up' orientation and 'down' orientation. This means the state is inclined, depending on how theta is changed. If theta needs to be measured, the ratio of intensity between the up/down values must be measured. Talking about orientation, the theta angle can be compared to 'altitude', whilst the phi angle with 'longitude'.

Let's take a case where thetais90 and phiis0. Due to the fact that it is on the horizontal plane, if the magnet splits the beam in two, and if phi is different from 0, there will always be a different distribution caused by the magnet on the plane, even if theta remains the same. This is always the mean value of the orientation.

As it can be seen, orientation may be 'classically' well de ned, but it is not the case in quantum mechanics. As some call it, there is not the same 'sharpness'. However, if there are many and you take the mean values, then, on average, you get 'an orientation'. This comes from a certain process, roughly it looks like this:

But what is the 'procedure'? It is a set of questions. The type of questions depend on the mathematics of the problem.

Let's take a step back. A vector is determined by its components. In classical mechanics, the measurements (of the components) are that of the state of the vector - there is no ambiguity. The difference between the way in which a problem is described in quantum mechanics, is that the state and the values change when the system is described.

If there is a system, for instance our phieq, what is the mean value of the component? The 'procedure' is needed to find out. It's based on the state and on a set of observable factors, put on the state. These observable factors are the , , and components.

The observable factors, given a state, become matrices (that are general operators), more specifically three, one for each direction. After a series of mathematical operations, the mean value of the component along , , and is obtained. The possible values that can be obtained by measuring may be all 'up', 'down', 'left', 'right', 'forwards', and 'back'.

You might be asking yourself, what's in the system? What can be measured? From the procedure, given the state, latlon the two values are 'close relatives' of the angles used to describe the position on an object (take note of the square brackets). Usually, the state is written as a function of similar angles to theta and phi , that correspond with angles that would be measured after the procedure.

In order to describe an object's orientation, there are 'standards. The most used conven- tion for the orientation, is to start from an axis. 2 angles are needed. The first is the angle the object has in relation to the axis, an angle similar (but not the same!) as our angle theta .

On the horizontal,

This corresponds with the 'latitude'. (Note that this new version of QuGUI, V2.4, the theta is at 180deg at default.) The second angle, which corresponds with the 'longitude', taking the projection on the horizontal plane, corresponds to how much it 'turns'. If it turns counterclockwise:

Now, the equation has changed and become:

With the previous and , theta, instead of being at its usual, positive angle, it was oriented 'down', remaining as 0.

If the (overall) mean value of the needs to be calculated, and we have a wide range of average values, a magnet can be aligned on the axis and, depending on the proportion of how the beam goes 'up'/'down', the result is given. They can be 'reconstructed' as an mean value, which are, on average, those given by the and values.

Let's move on to talking in more detail about the 'procedure'. On a side, let's also keep in mind that vectors are the 'quantic amplitudes', and that the 'operators' are:

As well as 3, 2x2, matrices:

The mean of the state is given by the product of the . Let's look at a very simple example: If we get

About

Work for Python Tkinter GUI application for numerical experiments of the dynamics of an isolated qubit. Versions 1 and 1.2.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy