Skip to content

This repo is the official implementation of "MART: MultiscAle Relational Transformer Networks for Trajectory Prediction", ECCV 2024.

License

Notifications You must be signed in to change notification settings

gist-ailab/MART

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

22 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ›’MARTπŸ›’
MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction

Seongju Lee Β· Junseok Lee Β· Yeonguk Yu Β· Taeri Kim Β· Kyoobin Lee
ECCV 2024

ECCV Paper Arxiv Poster Source Code Cite MART


This repo is the official implementation of "MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction (ECCV 2024)"

πŸ“’ Updates

  • (2024.09.19) Official repository of πŸ›’MARTπŸ›’ is released
  • (2024.09.30) Update ECCV poster
  • (2024.11.21) Train and evaluation code for ETH-UCY dataset is uploaded
  • (2024.11.22) Train and evaluation code for SDD dataset is uploaded
  • (2025.06.24) Minor bug in PRT is fixed
  • (2025.xx.xx) Source code for convert SDD dataset from PECNet is uploaded
  • (2025.xx.xx) Source code for visualization is uploaded

πŸ–ΌοΈ ECCV Poster

model

πŸš€ Getting Started

Environment Setup

  1. Set up a python environment
conda create -n mart python=3.8
conda activate mart
  1. Install requirements using the following command.
pip install -r requirements.txt

πŸš‚ Train & Evaluation

πŸ€ NBA Dataset

  • The dataset is included in ./datasets/nba/

  • Train MART on the NBA dataset

    python main_nba.py --config ./configs/mart_nba.yaml --gpu $GPU_ID
    
  • Test MART on the NBA dataset after training

    python main_nba.py --config ./configs/mart_nba.yaml --gpu $GPU_ID --test
    

🚢 ETH-UCY Dataset

  • The dataset is included in ./datasets/ethucy/

  • Train MART on the ETH-UCY dataset

    chmod +x ./scripts/train_eth_all.sh
    ./scripts/train_eth_all.sh ./configs/mart_eth.yaml $GPU_ID
    
  • Test MART on the ETH-UCY dataset after training

    chmod +x ./scripts/test_eth_all.sh
    ./scripts/test_eth_all.sh ./configs/mart_eth.yaml $GPU_ID
    

🚁 SDD Dataset

  • The dataset is included in ./datasets/stanford/

  • Train MART on the SDD dataset

    python main_sdd.py --config ./configs/mart_sdd.yaml --gpu $GPU_ID
    
  • Test MART on the SDD dataset after training

    python main_sdd.py --config ./configs/mart_sdd.yaml --gpu $GPU_ID --test
    

πŸ“Š Main Results

πŸ€ NBA Dataset

  • Version with minor bug fixes
    minADE (4.0s): 0.728
    minFDE (4.0s): 0.902
    
  • In paper
    minADE (4.0s): 0.727
    minFDE (4.0s): 0.903
    

🚢 ETH-UCY Dataset

minADE Table
       ETH    HOTEL    UNIV    ZARA1    ZARA2    AVG
       0.35    0.14    0.25    0.17    0.13    0.21    

minFDE Table
       ETH    HOTEL    UNIV    ZARA1    ZARA2    AVG
       0.47    0.22    0.45    0.29    0.22    0.33    

🚁 SDD Dataset

minADE: 7.43
minFDE: 11.82

🐣 How to reproduce results

πŸ€ NBA Dataset

  • The checkpoint is included in ./checkpoints/mart_nba_reproduce/

    python main_nba.py --config ./configs/mart_nba_reproduce.yaml --gpu $GPU_ID --test
    
  • The results will be saved in ./results/nba_result.csv

🚢 ETH-UCY Dataset

  • The checkpoints are included in ./checkpoints/mart_eth_reproduce/
    ./scripts/test_eth_all.sh ./configs/mart_eth_reproduce.yaml $GPU_ID
    
  • The results will be saved in ./results/$SUBSET-NAME_result.csv

🚁 SDD Dataset

  • The checkpoint is included in ./checkpoints/mart_sdd_reproduce/
    python main_sdd.py --config ./configs/mart_sdd_reproduce.yaml --gpu $GPU_ID --test
    
  • The results will be saved in ./results/sdd_result.csv

πŸ“ Citation

@inproceedings{lee2024mart,
  title={MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction},
  author={Lee, Seongju and Lee, Junseok and Yu, Yeonguk and Kim, Taeri and Lee, Kyoobin},
  booktitle={European Conference on Computer Vision},
  pages={89--107},
  year={2024},
  organization={Springer}
}

πŸ€— Acknowledgement

  • The part of the code about the feature initialization is adapted from (GroupNet).
  • Thanks for sharing the preprocessed NBA dataset and dataloader (LED).
  • Thanks for sharing the ETH-UCY dataloader (SGCN).
  • Thanks for sharing the training code of ETH-UCY (NPSN).
  • Thanks for sharing the preprocessed SDD dataset (PECNet).
  • Thanks for providing the code of the Relational Transformer (RT). We implemented the RT from jax to pytorch.

About

This repo is the official implementation of "MART: MultiscAle Relational Transformer Networks for Trajectory Prediction", ECCV 2024.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy