Skip to content
/ lzy Public

Platform for a hybrid execution of ML workflows that transparently integrates local and remote runtimes

License

Notifications You must be signed in to change notification settings

lambdazy/lzy

Repository files navigation

Pypi version Tests Java tests coverage Python tests coverage PyPI - Python Version Telegram chat

ʎzy

ʎzy is a platform for a hybrid execution of ML workflows that transparently integrates local and remote runtimes with the following properties:

  • Python-native SDK
  • Automatic env (pip/conda) sync
  • K8s-native runtime
  • Resources allocation on-demand
  • Env-independent results storage

Quick start

ʎzy allows running any python functions on a cluster by annotating them with @op decorator:

@op(gpu_count=1, gpu_type=GpuType.V100.name)
def train(data_set: Bunch) -> CatBoostClassifier:
    cb_model = CatBoostClassifier(iterations=1000, task_type="GPU", devices='0:1', train_dir='/tmp/catboost')
    cb_model.fit(data_set.data, data_set.target, verbose=True)
    return cb_model


# local python function call
model = train(data_set)

# remote call on a cluster
lzy = Lzy()
with lzy.workflow("training"):
    model = train(data_set)

Please read the tutorial for details.

Runtime

Check out our key concepts and architecture intro.

Community

Join our chat on telegram!

Development

Development guide.

Deployment

Deployment guide.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy