Skip to content

manabil/Tensorflow-Advanced-Techniques-Specialization

Repository files navigation

Tensorflow: Advanced Techniques Specialization


tox repo_size

This is my assignment in that specialization. This repo only includes lab files, and assignment files in all classes (and all weeks). If you want to ask about this repo, feel free to contact me

You can also get all the raw files in here

Table of Content

.
├── Advanced Computer Vision with Tensorflow
│   ├── Week 1
│   │   ├── C3W1_Assignment.ipynb
│   │   ├── C3_W1_Lab_1_transfer_learning_cats_dogs.ipynb
│   │   ├── C3_W1_Lab_2_Transfer_Learning_CIFAR_10.ipynb
│   │   └── C3_W1_Lab_3_Object_Localization.ipynb
│   └── Week 2
│       ├── C3_W2_Lab_1_Simple_Object_Detection.ipynb
│       └── C3_W2_Lab_2_Object_Detection.ipynb
├── Custom Models, Layers, Loss Functions with Tensorflow
│   ├── Week 1
│   │   ├── C1W1_Assignment.ipynb
│   │   ├── C1_W1_Lab_1_functional-practice.ipynb
│   │   ├── C1_W1_Lab_2_multi-output.ipynb
│   │   ├── C1_W1_Lab_3_siamese-network.ipynb
│   │   ├── data
│   │   │   └── ENB2012_data.xlsx
│   │   ├── utils.py
│   │   ├── winequality-red.csv
│   │   └── winequality-white.csv
│   ├── Week 2
│   │   ├── C1W2_Assignment.ipynb
│   │   ├── C1_W2_Lab_1_huber_loss.ipynb
│   │   ├── C1_W2_Lab_2_huber_object_loss.ipynb
│   │   └── utils.py
│   ├── Week 3
│   │   ├── C1W3_Assignment.ipynb
│   │   ├── C1_W3_Lab_1_lambda_layer.ipynb
│   │   ├── C1_W3_Lab_2_custom-dense-layer.ipynb
│   │   ├── C1_W3_Lab_3_custom_layer_activation.ipynb
│   │   └── utils.py
│   ├── Week 4
│   │   ├── C1W4_Assignment.ipynb
│   │   ├── C1_W4_Lab_1_basic_model.ipynb
│   │   ├── C1_W4_Lab_2_resnet_example.ipynb
│   │   ├── VGG.png
│   │   └── utils.py
│   └── Week 5
│       ├── C1_W5_Lab_1_exploring_callbacks.ipynb
│       ├── C1_W5_Lab_2_custom_callbacks.ipynb
│       └── animation.gif
└── Custom and Distributed Training with Tensorflow
    ├── Week 1
    │   ├── C2W1_Assignment.ipynb
    │   ├── C2_W1.pdf
    │   ├── C2_W1_Lab_1_basic_tensors.ipynb
    │   └── C2_W1_Lab_2_gradient_tape_basics.ipynb
    ├── Week 2
    │   ├── C2W2_Assignment.ipynb
    │   ├── C2_W2.pdf
    │   ├── C2_W2_Lab_1_training_basics.ipynb
    │   ├── C2_W2_Lab_2_training_categorical.ipynb
    │   ├── data
    │   │   └── data.csv
    │   └── test_model
    │       ├── saved_model.pb
    │       └── variables
    │           ├── variables.data-00000-of-00001
    │           └── variables.index
    ├── Week 3
    │   ├── C2W3_Assignment.ipynb
    │   ├── C2_W3.pdf
    │   ├── C2_W3_Lab_1_autograph_basics.ipynb
    │   ├── C2_W3_Lab_2_graphs_for_complex_code.ipynb
    │   └── data
    │       └── resnet_50_feature_vector
    │           ├── saved_model.pb
    │           └── variables
    │               ├── variables.data-00000-of-00001
    │               └── variables.index
    └── Week 4
        ├── C2W4_Assignment.ipynb
        ├── C2_W4.pdf
        ├── C2_W4_Lab_1_basic_mirrored_strategy.ipynb
        ├── C2_W4_Lab_2_multi_GPU_mirrored_strategy.ipynb
        ├── C2_W4_Lab_3_using_TPU_strategy.ipynb
        ├── C2_W4_Lab_4_one_device_strategy.ipynb
        └── data

Contributors 2

  •  
  •  
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy