Access the world's best open language models in one place!
OllamaFreeAPI provides free access to leading open-source LLMs including:
- 🦙 LLaMA 3 (Meta)
- 🌪️ Mistral (Mistral AI)
- 🔍 DeepSeek (DeepSeek)
- 🦄 Qwen (Alibaba Cloud)
No payments. No credit cards. Just pure AI power at your fingertips.
pip install ollamafreeapi
- API Reference - Complete API documentation
- Usage Examples - Practical code examples
- Model Catalog - Available models and their capabilities
Feature | Others | OllamaFreeAPI |
---|---|---|
Free Access | ❌ Limited trials | ✅ Always free |
Model Variety | 3-5 models | 50+ models |
Global Infrastructure | Single region | 5 continents |
Ease of Use | Complex setup | Zero-config |
Community Support | Paid only | Free & active |
Here are some key statistics about the current state of OllamaFreeAPI:
- Active Models: 651 (Ready to use right now)
- Model Types: 6 (Different families of models)
- Quantization Methods: 8 (Ways to run faster)
- Average Size of Models: 5.3 GB
from ollamafreeapi import OllamaFreeAPI
client = OllamaFreeAPI()
# Stream responses in real-time
for chunk in client.stream_chat('llama3.3:70b', 'Tell me a story:'):
print(chunk, end='', flush=True)
from ollamafreeapi import OllamaFreeAPI
client = OllamaFreeAPI()
# Get instant responses
response = client.chat(
model_name="llama3.3:70b",
prompt="Explain neural networks like I'm five",
temperature=0.7
)
print(response)
llama3:8b-instruct
- Meta's latest 8B parameter modelmistral:7b-v0.2
- High-performance 7B modeldeepseek-r1:7b
- Strong reasoning capabilitiesqwen:7b-chat
- Alibaba's versatile model
llama3:code
- Optimized for programmingmistral:storyteller
- Creative writing specialistdeepseek-coder
- STEM and math expert
Our free API is powered by:
- 25+ dedicated GPU servers
- 5 global regions (NA, EU, Asia)
- Automatic load balancing
- 99.5% uptime SLA
# List available models
api.list_models()
# Get model details
api.get_model_info("mistral:7b")
# Generate text
api.chat(model_name="llama3:latest", prompt="Your message")
# Stream responses
for chunk in api.stream_chat(...):
print(chunk, end='')
# Check server locations
api.get_model_servers("deepseek-r1:7b")
# Generate raw API request
api.generate_api_request(...)
# Get performance metrics
api.get_server_status()
Resource | Free Tier | Pro Tier |
---|---|---|
Requests | 100/hr | 10,000/hr |
Tokens | 16k | 128k |
Speed | 50 t/s | 150 t/s |
Models | 7B only | All sizes |
We welcome contributions! Please see our Contributing Guide for details.
Open-source MIT license - View License