Skip to content

Training spiking networks with hybrid ann-snn conversion and spike-based backpropagation

Notifications You must be signed in to change notification settings

nitin-rathi/hybrid-snn-conversion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation

This is the code related to the paper titled "Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation" published in ICLR, 2020

Training Methodology

The training is performed in the following two steps:

  • Train an ANN ('ann.py')
  • Convert the ANN to SNN and perform spike-based backpropagation ('snn.py')

Files

  • 'ann.py' : Trains an ANN, the architecutre, dataset, training settings can be provided an input argument
  • 'snn.py' : Trains an SNN from scratch or performs ANN-SNN conversion if pretrained ANN is available.
  • /self_models : Contains the model files for both ANN and SNN
  • 'ann_script.py' and 'snn_script.py': These scripts can be used to design various experiments, it creates 'script.sh' which can be used to run multiple models

Trained ANN models

Trained SNN models

Issues

  • Sometimes the 'STDB' activation becomes unstable during training, leading to accuracy drop. The solution is to modulate the alpha and beta parameter or change the activation to 'Linear' in 'main.py'
  • Another reason for drop in accuracy could be the leak parameter. Please change 'leak_mem=1.0' in 'main.py'. This changes the leaky-integrate-and-fire (LIF) neuron to integrate-and-fire (IF) neuron.

Citation

If you use this code in your work, please cite the following paper

@inproceedings{
Rathi2020Enabling,
title={Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation},
author={Nitin Rathi and Gopalakrishnan Srinivasan and Priyadarshini Panda and Kaushik Roy},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=B1xSperKvH}
}

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy