-
-
Notifications
You must be signed in to change notification settings - Fork 11.1k
ENH: Extend numpy.pad to handle pad_width dictionary argument. #29273
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
carlosgmartin
wants to merge
1
commit into
numpy:main
Choose a base branch
from
carlosgmartin:numpy_pad_dict
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+65
−5
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
7f3f925
to
2e32e52
Compare
This comment has been minimized.
This comment has been minimized.
jorenham
reviewed
Jun 26, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This seems pretty useful to me. And I think that using a dict
to represent a sparse sequence makes sense.
2e32e52
to
5ee3f62
Compare
This comment has been minimized.
This comment has been minimized.
5ee3f62
to
53779a7
Compare
jorenham
reviewed
Jun 26, 2025
jorenham
reviewed
Jun 26, 2025
This comment has been minimized.
This comment has been minimized.
mattip
reviewed
Jun 26, 2025
53779a7
to
db9830a
Compare
This comment has been minimized.
This comment has been minimized.
db9830a
to
cb021eb
Compare
cb021eb
to
8f5ce9c
Compare
Diff from mypy_primer, showing the effect of this PR on type check results on a corpus of open source code: colour (https://github.com/colour-science/colour)
- colour/io/luts/lut.py:1378: note: def [_ScalarT: generic[Any]] pad(array: _SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int], mode: Literal['constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', 'empty'] = ..., *, stat_length: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | None = ..., constant_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., end_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., reflect_type: Literal['odd', 'even'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
+ colour/io/luts/lut.py:1378: note: def [_ScalarT: generic[Any]] pad(array: _SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | dict[int, int] | dict[int, tuple[int, int]] | dict[int, int | tuple[int, int]], mode: Literal['constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', 'empty'] = ..., *, stat_length: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | None = ..., constant_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., end_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., reflect_type: Literal['odd', 'even'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
- colour/io/luts/lut.py:1378: note: def pad(array: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int], mode: Literal['constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', 'empty'] = ..., *, stat_length: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | None = ..., constant_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., end_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., reflect_type: Literal['odd', 'even'] = ...) -> ndarray[tuple[Any, ...], dtype[Any]]
+ colour/io/luts/lut.py:1378: note: def pad(array: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | dict[int, int] | dict[int, tuple[int, int]] | dict[int, int | tuple[int, int]], mode: Literal['constant', 'edge', 'linear_ramp', 'maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', 'empty'] = ..., *, stat_length: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | None = ..., constant_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., end_values: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] = ..., reflect_type: Literal['odd', 'even'] = ...) -> ndarray[tuple[Any, ...], dtype[Any]]
- colour/io/luts/lut.py:1378: note: def [_ScalarT: generic[Any]] pad(array: _SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int], mode: _ModeFunc, **kwargs: Any) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
+ colour/io/luts/lut.py:1378: note: def [_ScalarT: generic[Any]] pad(array: _SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | dict[int, int] | dict[int, tuple[int, int]] | dict[int, int | tuple[int, int]], mode: _ModeFunc, **kwargs: Any) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
- colour/io/luts/lut.py:1378: note: def pad(array: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int], mode: _ModeFunc, **kwargs: Any) -> ndarray[tuple[Any, ...], dtype[Any]]
+ colour/io/luts/lut.py:1378: note: def pad(array: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], pad_width: _SupportsArray[dtype[integer[Any]]] | _NestedSequence[_SupportsArray[dtype[integer[Any]]]] | int | _NestedSequence[int] | dict[int, int] | dict[int, tuple[int, int]] | dict[int, int | tuple[int, int]], mode: _ModeFunc, **kwargs: Any) -> ndarray[tuple[Any, ...], dtype[Any]]
|
jorenham
approved these changes
Jun 26, 2025
mattip
approved these changes
Jun 27, 2025
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Fixes #29268.