Skip to content
This repository was archived by the owner on Nov 2, 2024. It is now read-only.

object-detection-algorithm/R-CNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

R-CNN

Documentation Status standard-readme compliant Conventional Commits Commitizen friendly

R-CNN算法实现

学习论文Rich feature hierarchies for accurate object detection and semantic segmentation,实现R-CNN算法,完成目标检测器的训练和使用

R-CNN实现由如下3部分组成:

  1. 区域建议算法(SelectiveSearch
  2. 卷积网络模型(AlexNet
  3. 线性分类器(线性SVM

区域建议算法使用OpenCV实现,进一步学习可参考zjZSTU/selectivesearch

内容列表

背景

R-CNN(Region-CNN)是最早实现的深度学习检测算法,其结合了选择性搜索算法和卷积神经网络。复现R-CNN算法,也有利于后续算法的研究和学习

安装

本地编译文档

需要预先安装以下工具:

$ pip install mkdocs

用法

文档浏览

有两种使用方式

  1. 在线浏览文档:R-CNN

  2. 本地浏览文档,实现如下:

    $ git clone https://github.com/zjZSTU/R-CNN.git
    $ cd R-CNN
    $ mkdocs serve
    

    启动本地服务器后即可登录浏览器localhost:8000

python实现

$ cd py/
$ python car_detector.py

主要维护人员

  • zhujian - Initial work - zjZSTU

致谢

引用

@misc{girshick2013rich,
    title={Rich feature hierarchies for accurate object detection and semantic segmentation},
    author={Ross Girshick and Jeff Donahue and Trevor Darrell and Jitendra Malik},
    year={2013},
    eprint={1311.2524},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@misc{pascal-voc-2007,
	author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
	title = "The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2007 {(VOC2007)} {R}esults",
	howpublished = "http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html"}

参与贡献方式

欢迎任何人的参与!打开issue或提交合并请求。

注意:

许可证

Apache License 2.0 © 2020 zjZSTU

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy