Skip to content

prs-eth/PCAccumulation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository represents the official implementation of the ECCV2022 paper:

Shengyu Huang, Zan Gojcic, Jiahui Huang, Andreas Wieser, Konrad Schindler
| ETH Zurich | NVIDIA Toronto AI Lab | BRCist |

Contact

If you have any questions, please let me know:

Instructions

This code has been tested on:

  • Python 3.10.4, PyTorch 1.12.0+cu116, CUDA 11.6, gcc 11.2.0, GeForce RTX 3090
  • Python 3.8.3, PyTorch 1.10.2+cu111, CUDA 11.1, gcc 9.4.0, GeForce RTX 3090

Requirements

Please adjust according to your cuda version, then run the following to create a virtual environment:

virtualenv venv_pcaccumulation
source venv_pcaccumulation/bin/activate
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.12.0+cu116.html
pip install pyfilter nestargs

Then clone our repository by running:

git clone https://github.com/prs-eth/PCAccumulation.git
cd PCAccumulation

Datasets and pretrained models

We provide preprocessed Waymo and nuScenes datasets. The preprocessed dataset and checkpoint can be downloaded by running:

wget --no-check-certificate --show-progress https://share.phys.ethz.ch/~gseg/PCAccumulation/data.zip
unzip data.zip
wget --no-check-certificate --show-progress https://share.phys.ethz.ch/~gseg/PCAccumulation/checkpoints.zip
unzip checkpoints.zip

Evaluation

Val

To quickly run a sanity check of the data, code, and checkpoints on validation split, please run

python main.py configs/waymo/waymo.yaml 10 1 --misc.mode=val --misc.pretrain=checkpoints/waymo.pth --path.dataset_base_local=$YOUR_DATASET_FOLDER

or

python main.py configs/nuscene/nuscene.yaml 10 1 --misc.mode=val --misc.pretrain=checkpoints/nuscene.pth --path.dataset_base_local=$YOUR_DATASET_FOLDER

You will see the evaluation metrics like the following:

Successfully load pretrained model from checkpoints/nuscene.pth at epoch 77!
Current best loss 1.3937173217204215
Current best metric 0.8779626780515821
val Epoch: 0	mos_iou: 0.880	mos_recall: 0.942	mos_precision: 0.930	fb_iou: 0.856	fb_recall: 0.918	fb_precision: 0.918	ego_l1_loss: 0.161	ego_l2_loss: 0.119	ego_rot_error: 0.227	ego_trans_error: 0.100	perm_loss: 0.010	fb_loss: 0.341	mos_loss: 0.401	offset_loss: 0.329	offset_l1_loss: 0.531	offset_dir_loss: 0.127	offset_l2_error: 0.436	obj_loss: 0.139	inst_l2_error: 0.214	dynamic_inst_l2_error: 0.268	loss: 1.378	
static:  IoU: 0.929,  Recall: 0.954,  Precision: 0.972 
dynamic:  IoU: 0.832,  Recall: 0.93,  Precision: 0.887 
background:  IoU: 0.974,  Recall: 0.987,  Precision: 0.987 
foreground:  IoU: 0.737,  Recall: 0.849,  Precision: 0.849 

in snapshot/nuscene/log

Test

To evaluate on the held-out test set, please run

python main.py configs/waymo/waymo.yaml 1 1 --misc.mode=test --misc.pretrain=checkpoints/waymo.pth --path.dataset_base_local=$YOUR_DATASET_FOLDER

This will save per-scene flow estimation/errors to results/waymo. Next, please run the following script to get final evaluation:

python toolbox/evaluation.py results/waymo waymo

Citation

If you find this code useful for your work or use it in your project, please consider citing:

@inproceedings{huang2022accumulation,
  title={Dynamic 3D Scene Analysis by Point Cloud Accumulation},
  author={Shengyu Huang and Zan Gojcic and Jiahui Huang and Andreas Wieser, Konrad Schindler},
  booktitle={European Conference on Computer Vision, ECCV},
  year={2022}
}

Acknowledgements

In this project we use (parts of) the following repositories:

We thank the respective developers for open sourcing and maintenance. We would also like to thank reviewers 1 & 2 for their valuable inputs.

About

[ECCV 2022] Dynamic 3D Scene Analysis by Point Cloud Accumulation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy