Skip to content

Add some new flags: use_module_definitions to load custom model, dataset and loaders ; checkpoints ; add f1,prec,recall calc. #1237

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 18 commits into
base: main
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Add -tb flag for tensorboard logging dir
  • Loading branch information
attilamester committed Mar 3, 2024
commit aad2384e631f0618cb54c1bd3c065cb0e7bf63e3
31 changes: 29 additions & 2 deletions imagenet/main.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import argparse
import datetime
import os
import random
import shutil
Expand All @@ -21,6 +22,7 @@
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset
from torch.utils.tensorboard import SummaryWriter

model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
Expand All @@ -43,6 +45,7 @@
'get_train_loader() -> torch.utils.data.DataLoader'
'get_val_loader() -> torch.utils.data.DataLoader'
'(default: None)')
parser.add_argument('-tb', '--tb-summary-writer-dir', metavar='SUMMARY_DIR', default=None)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
Expand Down Expand Up @@ -188,6 +191,7 @@ def main_worker(gpu, ngpus_per_node, args):
else:
module = safe_import(args.use_module_definitions.replace('.py', ''))
model = get_module_method(module, 'get_model', nn.Module)

if not torch.cuda.is_available() and not torch.backends.mps.is_available():
print('using CPU, this will be slow')
elif args.distributed:
Expand Down Expand Up @@ -323,12 +327,29 @@ def main_worker(gpu, ngpus_per_node, args):
validate(val_loader, model, criterion, args)
return

tensorboard_writer = None
if args.tb_summary_writer_dir:
today = datetime.datetime.now().strftime("%Y-%m-%d")
model_info = ""
train_dataset_info = len(train_dataset)
val_dataset_info = len(val_dataset)

if callable(getattr(model, "get_info", None)):
model_info = f"-{model.get_info()}"

tb_log_dir_name = (f"{today}_{model.__class__.__name__}{model_info}"
f"_{train_dataset.__class__.__name__}-{train_dataset_info}"
f"_{val_dataset.__class__.__name__}-{val_dataset_info}")
tb_log_dir_path = os.path.join(args.tb_summary_writer_dir, tb_log_dir_name)
tensorboard_writer = SummaryWriter(tb_log_dir_path)
print(f'TensorBoard summary writer is created at {tb_log_dir_path}')

for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)

# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, device, args)
train_loss = train(train_loader, model, criterion, optimizer, epoch, device, args)

# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
Expand All @@ -350,8 +371,12 @@ def main_worker(gpu, ngpus_per_node, args):
'scheduler': scheduler.state_dict()
}, is_best)

if tensorboard_writer:
tensorboard_writer.add_scalars('Loss', dict(train=train_loss), epoch + 1)
tensorboard_writer.add_scalars('Accuracy', dict(val=acc1), epoch + 1)


def train(train_loader, model, criterion, optimizer, epoch, device, args):
def train(train_loader, model, criterion, optimizer, epoch, device, args) -> float:
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
Expand Down Expand Up @@ -396,6 +421,8 @@ def train(train_loader, model, criterion, optimizer, epoch, device, args):
if i % args.print_freq == 0:
progress.display(i + 1)

return loss.item()


def validate(val_loader, model, criterion, args):
def run_validate(loader, base_progress=0):
Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy