Skip to content

Higher peak memory with torch.compile #122512

@ad8e

Description

@ad8e

🐛 Describe the bug

If I fuse the backward with compiled forward+loss, there's a higher peak memory than if I separate the backward from compiled forward+loss. It looks like the logits aren't being cleared.

Fused forward+loss+backward:

@torch.compile
def fused_forward_and_loss_and_backward(input_ids, labels):
    logits = model.forward(input_ids)
    loss = F.cross_entropy(logits.view(-1, logits.shape[-1]).float(), labels.view(-1))
    # del logits # doesn't change peak memory
    loss.backward()
    return loss
...
# usage:
loss = fused_forward_and_loss_and_backward(batch_input_ids, gas_labels)
print("peak memory usage", torch.cuda.max_memory_allocated())

Results:

peak memory usage 22139266048 (first step)
peak memory usage 23943063552 (second step)
peak memory usage 23943063552 (third step)

Fused forward+loss, separated backward:

@torch.compile
def fused_forward_and_loss(input_ids, labels):
    logits = model.forward(input_ids)
    loss = F.cross_entropy(logits.view(-1, logits.shape[-1]).float(), labels.view(-1))
    # loss.backward() # no backward here!
    return loss
...
# usage:
loss = fused_forward_and_loss(batch_input_ids, gas_labels)
loss.backward()
print("peak memory usage", torch.cuda.max_memory_allocated())

Results:

peak memory usage 19991782400
peak memory usage 21795579392
peak memory usage 21795579392

Memory traces:
https://drive.google.com/file/d/18UywAfWmBDNJMzbCy44KVUy6qCug3cxX/view?usp=sharing
https://drive.google.com/file/d/1A0Cu9fAbJS1dbzBJvRmm-0U1ygsmtT9W/view?usp=sharing

Error logs

No response

Minified repro

No response

Versions

Collecting environment information...
PyTorch version: 2.2.0
Is debug build: False
CUDA used to build PyTorch: 12.2
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.28.3
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.19.17-coreweave-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A40
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7413 24-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3630.8101
CPU min MHz: 1500.0000
BogoMIPS: 5299.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization: AMD-V
L1d cache: 1.5 MiB (48 instances)
L1i cache: 1.5 MiB (48 instances)
L2 cache: 24 MiB (48 instances)
L3 cache: 256 MiB (8 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.2.0
[pip3] torchaudio==2.2.0
[pip3] torchvision==0.17.0
[pip3] triton==2.2.0
[conda] Could not collect

cc @ezyang @msaroufim @bdhirsh @anijain2305 @zou3519 @chauhang @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @amjames @desertfire

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: aotdispatchumbrella label for AOTAutograd issuesmodule: pt2-dispatcherPT2 dispatcher-related issues (e.g., aotdispatch, functionalization, faketensor, custom-op,oncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      pFad - Phonifier reborn

      Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

      Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


      Alternative Proxies:

      Alternative Proxy

      pFad Proxy

      pFad v3 Proxy

      pFad v4 Proxy