Skip to content

ratschlab/GP-VAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GP-VAE: Deep Probabilistic Time Series Imputation

Code for paper

Overview

Our approach utilizes Variational Autoencoders with Gaussian Process prior for time series imputation.

  • The inference model takes time series with missingness and predicts variational parameters for multivariate Gaussian variational distribution.

  • The Gaussian Process prior encourages latent representations to capture the temporal correlations in data.

  • The generative model takes the sample from posterior approximation and reconstructs the original time series with imputed missing values.

img

Dependencies

  • Python >= 3.6
  • TensorFlow = 1.15
  • Some more packages: see requirements.txt

Run

  1. Clone or download this repo. cd yourself to it's root directory.

  2. Grab or build a working python enviromnent. Anaconda works fine.

  3. Install dependencies, using pip install -r requirements.txt

  4. Download data: bash data/load_{hmnist, sprites, physionet}.sh.

  5. Run command CUDA_VISIBLE_DEVICES=* python train.py --model_type {vae, hi-vae, gp-vae} --data_type {hmnist, sprites, physionet} --exp_name <your_name> ...

    To see all available flags run: python train.py --help

Reproducibility

We provide a set of hyperparameters used in our final runs. Some flags have common values for all datasets by default. For reproducibility of reported results run:

  • HMNIST: python train.py --model_type gp-vae --data_type hmnist --exp_name reproduce_hmnist --seed $RANDOM --testing --banded_covar --latent_dim 256 --encoder_sizes=256,256 --decoder_sizes=256,256,256 --window_size 3 --sigma 1 --length_scale 2 --beta 0.8 --num_epochs 20
  • SPRITES: python train.py --model_type gp-vae --data_type sprites --exp_name reproduce_sprites --seed $RANDOM --testing --banded_covar --latent_dim 256 --encoder_sizes=32,256,256 --decoder_sizes=256,256,256 --window_size 3 --sigma 1 --length_scale 2 --beta 0.1 --num_epochs 20
  • Physionet: python train.py --model_type gp-vae --data_type physionet --exp_name reproduce_physionet --seed $RANDOM --testing --banded_covar --latent_dim 35 --encoder_sizes=128,128 --decoder_sizes=256,256 --window_size 24 --sigma 1.005 --length_scale 7 --beta 0.2 --num_epochs 40

About

TensorFlow implementation for the GP-VAE model described in https://arxiv.org/abs/1907.04155

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy