Skip to content

Implement iteration over more polynomial rings #39446

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 30 commits into
base: develop
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 4 commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
a9a3660
Implement iteration over some polynomial rings
user202729 Jan 28, 2025
72cee9e
Make cardinality return Sage Integer
user202729 Feb 3, 2025
443dd01
Make category(GF(3)[x]) enumerated
user202729 Feb 3, 2025
a3b3e1f
Make Zmod(1)[x] enumerated and remove cardinality()
user202729 Feb 3, 2025
5fb4695
Temporarily remove Enumerated from LaurentPolynomialRing
user202729 Feb 3, 2025
1f354a1
Modify some_elements() to make tests pass
user202729 Feb 3, 2025
9ec9af8
Implement correct iteration through disjoint enumerated set for infin…
user202729 Feb 4, 2025
2dd9b21
Handle the case where is_finite is not available
user202729 Feb 4, 2025
8a91beb
Fix tests
user202729 Feb 4, 2025
a1b6d67
Merge branch 'union-enumerate-inf' into more-polynomial-ring-iter
user202729 Feb 4, 2025
4563c6b
Merge branch 'improve-category-empty-finite' into more-polynomial-rin…
user202729 Feb 4, 2025
bc5c6c1
Implement iteration over more polynomial rings
user202729 Feb 4, 2025
73ee001
Fix lint
user202729 Feb 4, 2025
9e5e2ae
Merge branch 'improve-category-empty-finite' into more-polynomial-rin…
user202729 Feb 4, 2025
e54624f
Revert behavior of an_element for convenience
user202729 Feb 4, 2025
5441060
Fix some tests
user202729 Feb 4, 2025
678f208
Revert "Modify some_elements() to make tests pass"
user202729 Feb 4, 2025
834b604
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Feb 11, 2025
de970b1
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Feb 22, 2025
351dcf1
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 3, 2025
7fd0b69
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 10, 2025
7c7adc8
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 27, 2025
16942f6
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Apr 19, 2025
a5d90da
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Apr 29, 2025
9e1391d
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 May 18, 2025
7e64212
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 May 19, 2025
6cf9584
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Jun 1, 2025
2e4160b
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Jun 27, 2025
f123201
Merge branch 'develop' into more-polynomial-ring-iter
user202729 Jul 7, 2025
0a5dfc5
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Jul 27, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sage/categories/modules_with_basis.py
Original file line number Diff line number Diff line change
Expand Up @@ -2560,7 +2560,7 @@ def _an_element_(self):
B[()] + B[(1,2)] + 3*B[(1,2,3)] + 2*B[(1,3,2)]
sage: ABA = cartesian_product((A, B, A))
sage: ABA.an_element() # indirect doctest
2*B[(0, word: )] + 2*B[(0, word: a)] + 3*B[(0, word: b)]
2*B[(0, word: )] + 2*B[(1, ())] + 3*B[(1, (1,3,2))]
"""
from .cartesian_product import cartesian_product
return cartesian_product([module.an_element() for module in self.modules])
Expand Down
18 changes: 9 additions & 9 deletions src/sage/combinat/root_system/root_lattice_realizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -694,14 +694,14 @@ def positive_roots(self, index_set=None):
sage: [PR.unrank(i) for i in range(10)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2] + alpha[3],
alpha[3],
2*alpha[0] + 2*alpha[1] + 2*alpha[2] + 2*alpha[3],
alpha[1] + alpha[2],
3*alpha[0] + 3*alpha[1] + 3*alpha[2] + 3*alpha[3],
alpha[2] + alpha[3],
alpha[1] + alpha[2] + alpha[3],
alpha[0] + 2*alpha[1] + alpha[2] + alpha[3],
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3],
alpha[0] + alpha[1] + alpha[2] + 2*alpha[3],
alpha[0] + 2*alpha[1] + 2*alpha[2] + alpha[3]]
4*alpha[0] + 4*alpha[1] + 4*alpha[2] + 4*alpha[3],
alpha[1] + alpha[2] + alpha[3]]
"""
if self.cartan_type().is_affine():
from sage.sets.disjoint_union_enumerated_sets \
Expand Down Expand Up @@ -798,18 +798,18 @@ def positive_real_roots(self):
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
2*alpha[0] + 2*alpha[1] + alpha[2],
alpha[1] + alpha[2],
2*alpha[1] + alpha[2],
alpha[0] + alpha[1] + alpha[2]]
4*alpha[0] + 4*alpha[1] + 2*alpha[2]]

sage: Q = RootSystem(['D',3,2]).root_lattice()
sage: PR = Q.positive_roots() # needs sage.graphs
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2],
alpha[1] + 2*alpha[2],
alpha[1] + alpha[2],
alpha[0] + alpha[1] + 2*alpha[2]]
2*alpha[0] + 2*alpha[1] + 2*alpha[2]]
"""
if self.cartan_type().is_finite():
return tuple(RecursivelyEnumeratedSet(self.simple_roots(),
Expand Down
126 changes: 112 additions & 14 deletions src/sage/sets/disjoint_union_enumerated_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,32 +392,130 @@ def __iter__(self):
"""
TESTS::

sage: from itertools import islice
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations))
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
sage: list(islice(iter(U4), 6))
[[], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]]

sage: # needs sage.combinat
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations),
....: keepkey=True, facade=False)
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2])]
sage: el = next(it); el.parent() == U4
True
sage: el.value == (3, Permutation([2,1,3]))
sage: l = list(islice(iter(U4), 7)); l
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2]), (3, [2, 1, 3])]
sage: l[-1].parent() is U4
True

Check when both the set of keys and each element set is finite::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([1,2,3]),
....: 2: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when the set of keys is finite but each element set is infinite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family({1: NonNegativeIntegers(),
....: 2: NonNegativeIntegers()}), keepkey=True), 0, 10))
[(1, 0), (1, 1), (2, 0), (1, 2), (2, 1), (1, 3), (2, 2), (1, 4), (2, 3), (1, 5)]

Check when the set of keys is infinite but each element set is finite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet(range(x))),
....: keepkey=True), 0, 20))
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4)]

Check when some element sets are empty (note that if there are infinitely many sets
but only finitely many elements in total, the iteration will hang)::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([]),
....: 2: FiniteEnumeratedSet([]),
....: 3: FiniteEnumeratedSet([]),
....: 4: FiniteEnumeratedSet([]),
....: 5: FiniteEnumeratedSet([1,2,3]),
....: 6: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when there's one infinite set and infinitely many finite sets::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([]) if x else NonNegativeIntegers())),
....: 0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The following cannot be determined to be finite, but the first elements can still be retrieved::

sage: U = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([] if x >= 2 else [1, 2])),
....: keepkey=True)
sage: list(U) # not tested
sage: list(islice(iter(U), 5)) # not tested, hangs
sage: list(islice(iter(U), 4))
[(0, 1), (0, 2), (1, 1), (1, 2)]
"""
for k in self._family.keys():
for el in self._family[k]:
def wrap_element(el, k):
nonlocal self
if self._keepkey:
el = (k, el)
if self._facade:
return el
else:
return self.element_class(self, el) # Bypass correctness tests

keys_iter = iter(self._family.keys())
if self._keepkey:
seen_keys = []
el_iters = []
while keys_iter is not None or el_iters:
if keys_iter is not None:
try:
k = next(keys_iter)
except StopIteration:
keys_iter = None
if keys_iter is not None:
el_set = self._family[k]
try:
is_finite = el_set.is_finite()
except (AttributeError, NotImplementedError):
is_finite = False
if is_finite:
for el in el_set:
yield wrap_element(el, k)
else:
el_iters.append(iter(el_set))
if self._keepkey:
seen_keys.append(k)
any_stopped = False
for i, obj in enumerate(zip(seen_keys, el_iters) if self._keepkey else el_iters):
if self._keepkey:
k, el_iter = obj
else:
k = None
el_iter = obj
try:
el = next(el_iter)
except StopIteration:
el_iters[i] = None
any_stopped = True
continue
yield wrap_element(el, k)
if any_stopped:
if self._keepkey:
el = (k, el)
if self._facade:
yield el
filtered = [*zip(
*[(k, el_iter) for k, el_iter in zip(seen_keys, el_iters) if el_iter is not None])]
if filtered:
seen_keys = list(filtered[0])
el_iters = list(filtered[1])
else:
seen_keys = []
el_iters = []
else:
yield self.element_class(self, el) # Bypass correctness tests
el_iters = [el_iter for el_iter in el_iters if el_iter is not None]

def an_element(self):
"""
Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy