Skip to content

sekocha/lammps-polymlp-package

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lammps-polymlp-package

A package of LAMMPS software enabling simulations using polynomial machine learning potentials

Building lammps with lammps-polymlp package

(lammps-polymlp-package is tested using LAMMPS_VERSION "lammps-23Jun2022”)

  1. Copy all the components in the lammps-polymlp-package to the latest lammps source code directory as

    > cp -r lammps-polymlp-package/lib/polymlp $(lammps_src)/lib
    > cp -r lammps-polymlp-package/src/POLYMLP $(lammps_src)/src
    
  2. Add "polymlp" to variable PACKAGE defined in $(lammps_src)/src/Makefile and activate polymlp package as

    > cat $(lammps_src)/src/Makefile
        PACKAGE = \
        adios \
        amoeba \
        ...
        poems \
        polymlp \
        ptm \
        ...
        ml-iap \
        phonon
        ...
    > ulimit -s unlimited
    > cd $(lammps_src)/src
    > make yes-polymlp
    
  3. If necessary, modify compile options and flags in $(lammps_src)/src/MAKE/Makefile.serial and $(lammps_src)/lib/polymlp/Makefile.lammps

  4. Change directory to $(lammps_src)/src and build lammps binary files. (It requires approximately ten minutes to one hour for compiling polymlp_gtinv_data.cpp.)

    > make serial -j 36
    

Note that MPI is not currently available for the lammps-polymlp package, but OpenMP is supported. Even when using the OpenMP-supported lammps-polymlp package, you should compile LAMMPS using the command make serial. Parallel calculations can be performed using OpenMP with lmp_serial.

Machine learning potentials for a wide range of systems can be found in the website. If you use lammps-polymlp package and machine learning potentials in the repository for academic purposes, please cite the following article [1].

[1] A. Seko, "Systematic development of polynomial machine learning potentials for elemental and alloy systems", J. Appl. Phys. 133, 011101 (2023).

Lammps input commands to specify a machine learning potential

The following lammps input commands specify a machine learning potential.

    pair_style  polymlp
    pair_coeff * * polymlp.lammps Ti Al

If you are using a polynomial machine learning potential generated by pypolymlp (version >= 0.9.0), the potential can be specified as follows:

    pair_style  polymlp
    pair_coeff * * polymlp.yaml Ti Al

About

A user package of LAMMPS software enabling simulations using linearized machine learning potentials

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy