Skip to content

sshkhr/Practical_RL

Repository files navigation

Practical_RL

A course on reinforcement learning in the wild. Taught on-campus at HSE and YSDA and maintained to be friendly to online students (both english and russian).

Manifesto:

  • Optimize for the curious. For all the materials that aren’t covered in detail there are links to more information and related materials (D.Silver/Sutton/blogs/whatever). Assignments will have bonus sections if you want to dig deeper.
  • Practicality first. Everything essential to solving reinforcement learning problems is worth mentioning. We won't shun away from covering tricks and heuristics. For every major idea there should be a lab that makes you to “feel” it on a practical problem.
  • Git-course. Know a way to make the course better? Noticed a typo in a formula? Found a useful link? Made the code more readable? Made a version for alternative framework? You're awesome! Pull-request it!

Course info

  • Lecture slides are here.
  • Telegram chat room for YSDA & HSE students is here
  • Grading rules for YSDA & HSE students is here
  • Online student survival guide
  • Installing the libraries - guide and issues thread
  • Magical button that launches you into course environment:
    • Binder - comes will all libraries pre-installed. May be down time to time.
    • If it's down, try google colab or azure notebooks. Those last longer, but they will require you to run installer commands (see ./Dockerfile).
  • Anonymous feedback form for everything that didn't go through e-mail.
  • About the course

Additional materials

Syllabus

The syllabus is approximate: the lectures may occur in a slightly different order and some topics may end up taking two weeks.

  • week1 RL as blackbox optimization

    • Lecture: RL problems around us. Decision processes. Stochastic optimization, Crossentropy method. Parameter space search vs action space search.
    • Seminar: Welcome into openai gym. Tabular CEM for Taxi-v0, deep CEM for box2d environments.
    • Homework description - see week1/README.md.
    • ** YSDA Deadline: 2018.02.26 23.59**
    • ** HSE Deadline: 2018.01.28 23:59**
  • week2 Value-based methods

    • Lecture: Discounted reward MDP. Value-based approach. Value iteration. Policy iteration. Discounted reward fails.
    • Seminar: Value iteration.
    • Homework description - see week2/README.md.
    • ** HSE Deadline: 2018.02.11 23:59**
    • ** YSDA Deadline: part1 2018.03.05 23.59, part2 2018.03.12 23.59**
  • week3 Model-free reinforcement learning

    • Lecture: Q-learning. SARSA. Off-policy Vs on-policy algorithms. N-step algorithms. TD(Lambda).
    • Seminar: Qlearning Vs SARSA Vs Expected Value SARSA
    • Homework description - see week3/README.md.
    • HSE Deadline: 2018.02.15 23:59
    • ** YSDA Deadline: 2018.03.12 23.59**
  • week4_recap - deep learning recap

    • Lecture: Deep learning 101
    • Seminar: Simple image classification with convnets
  • week4 Approximate reinforcement learning

    • Lecture: Infinite/continuous state space. Value function approximation. Convergence conditions. Multiple agents trick; experience replay, target networks, double/dueling/bootstrap DQN, etc.
    • Seminar: Approximate Q-learning with experience replay. (CartPole, Atari)
    • HSE Deadline: 2018.03.04 23:30
    • ** YSDA Deadline: 2018.03.20 23.30**
  • week5 Exploration in reinforcement learning

    • Lecture: Contextual bandits. Thompson Sampling, UCB, bayesian UCB. Exploration in model-based RL, MCTS. "Deep" heuristics for exploration.

    • Seminar: bayesian exploration for contextual bandits. UCB for MCTS.

    • ** YSDA Deadline: 2018.03.30 23.30**

  • week6 Policy gradient methods I

    • Lecture: Motivation for policy-based, policy gradient, logderivative trick, REINFORCE/crossentropy method, variance reduction(baseline), advantage actor-critic (incl. GAE)
    • Seminar: REINFORCE, advantage actor-critic
  • week7_recap Recurrent neural networks recap

    • Lecture: Problems with sequential data. Recurrent neural netowks. Backprop through time. Vanishing & exploding gradients. LSTM, GRU. Gradient clipping
    • Seminar: character-level RNN language model
  • week7 Partially observable MDPs

    • Lecture: POMDP intro. POMDP learning (agents with memory). POMDP planning (POMCP, etc)
    • Seminar: Deep kung-fu & doom with recurrent A3C and DRQN
  • week8 Applications II

    • Lecture: Reinforcement Learning as a general way to optimize non-differentiable loss. G2P, machine translation, conversation models, image captioning, discrete GANs. Self-critical sequence training.
    • Seminar: Simple neural machine translation with self-critical sequence training
  • week9 Policy gradient methods II

    • Lecture: Trust region policy optimization. NPO/PPO. Deterministic policy gradient. DDPG. Bonus: DPG for discrete action spaces.
    • Seminar: Approximate TRPO for simple robotic tasks.
  • Some after-course bonus materials

Course staff

Course materials and teaching by: [unordered]

Contributions

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy