Skip to content

A collection of Gradient-Based Meta-Learning Algorithms with pytorch

License

Notifications You must be signed in to change notification settings

sungyubkim/GBML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GBML

A collection of Gradient-Based Meta-Learning Algorithms with pytorch

python3 main.py --alg=MAML
python3 main.py --alg=Reptile
python3 main.py --alg=CAVIA

Results on miniImagenet

  • Without pre-trained encoder (Use 64 channels by default. The exceptions are in parentheses)
5way 1shot 5way 1shot (ours) 5way 5shot 5way 5shot (ours)
MAML 48.70 ± 1.84% 49.00 % 63.11 ± 0.92% 65.18 %
Reptile 47.07 ± 0.26% 43.40 % 62.74 ± 0.37% -
CAVIA 49.84 ± 0.68% (128) 50.07 % (64) 64.63 ± 0.53% (128) 64.21 % (64)
iMAML 49.30 ± 1.88% - - -
Meta-Curvature 55.73 ± 0.94% (128) - 70.30 ± 0.72% (128) -
  • With pre-trained encoder (To be implemented.)
5way 1shot 5way 1shot (ours) 5way 5shot 5way 5shot (ours)
Meta-SGD 56.58 ± 0.21% - 68.84 ± 0.19% -
LEO 61.76 ± 0.08% - 77.59 ± 0.12% -
Meta-Curvature 61.85 ± 0.10% - 77.02 ± 0.11% -

Dependencies

To do

  • Add ResNet and Pre-trained encoder
  • Add iMAML, Meta-Curvature
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy