Skip to content

theislab/cellrank

Repository files navigation

PyPI Downloads CI Documentation Coverage Discourse

CellRank 2: Unified fate mapping in multiview single-cell data

docs/_static/img/light_mode_overview.png#gh-light-mode-only

docs/_static/img/dark_mode_overview.png#gh-dark-mode-only

CellRank is a modular framework to study cellular dynamics based on Markov state modeling of multi-view single-cell data. See our documentation, and the CellRank 1 and CellRank 2 manuscript to learn more.

CellRank scales to large cell numbers, is fully compatible with the scverse ecosystem, and easy to use. In the backend, it is powered by pyGPCCA (Reuter et al. (2018)). Feel free to open an issue if you encounter a bug, need our help or just want to make a comment/suggestion.

CellRank's key applications

  • Estimate differentiation direction based on a varied number of biological priors, including RNA velocity (La Manno et al. (2018), Bergen et al. (2020)), any pseudotime or developmental potential, experimental time points, metabolic labels, and more.
  • Compute initial, terminal and intermediate macrostates.
  • Infer fate probabilities and driver genes.
  • Visualize and cluster gene expression trends.
  • ... and much more, check out our documentation.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy