Skip to content

tunz/transformer-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Transformer

This is a pytorch implementation of the Transformer model like tensorflow/tensor2tensor.

Prerequisite

I tested it with PyTorch 1.0.0 and Python 3.6.8.

It's using SpaCy to tokenize languages for wmt32k dataset. So, if you want to run wmt32k problem which is a de/en translation dataset, you should download language models first with the following command.

$ pip install spacy
$ python -m spacy download en
$ python -m spacy download de

Usage

  1. Train a model.
$ python train.py --problem wmt32k --output_dir ./output --data_dir ./wmt32k_data
or
$ python train.py --problem lm1b --output_dir ./output --data_dir ./lm1b_data

If you want to try fast_transformer, give a model argument after installing tcop-pytorch.

$ python train.py --problem lm1b --output_dir ./output --data_dir ./lm1b_data --model fast_transformer
  1. You can translate a single sentence with the trained model.
$ python decoder.py --translate --data_dir ./wmt32k_data --model_dir ./output/last/models

About

Transformer implementation in PyTorch.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy