IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v20y2012i01p25-46_01.html
   My bibliography  Save this article

Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies

Author

Listed:
  • Hainmueller, Jens

Abstract

This paper proposes entropy balancing, a data preprocessing method to achieve covariate balance in observational studies with binary treatments. Entropy balancing relies on a maximum entropy reweighting scheme that calibrates unit weights so that the reweighted treatment and control group satisfy a potentially large set of prespecified balance conditions that incorporate information about known sample moments. Entropy balancing thereby exactly adjusts inequalities in representation with respect to the first, second, and possibly higher moments of the covariate distributions. These balance improvements can reduce model dependence for the subsequent estimation of treatment effects. The method assures that balance improves on all covariate moments included in the reweighting. It also obviates the need for continual balance checking and iterative searching over propensity score models that may stochastically balance the covariate moments. We demonstrate the use of entropy balancing with Monte Carlo simulations and empirical applications.

Suggested Citation

  • Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
  • Handle: RePEc:cup:polals:v:20:y:2012:i:01:p:25-46_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700012997/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
    4. Stefano DellaVigna & Ethan Kaplan, 2007. "The Fox News Effect: Media Bias and Voting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1187-1234.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    7. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
    8. Eggers, Andrew C. & Hainmueller, Jens, 2009. "MPs for Sale? Returns to Office in Postwar British Politics," American Political Science Review, Cambridge University Press, vol. 103(4), pages 513-533, November.
    9. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    10. Qin, Jing & Zhang, Biao & Leung, Denis H. Y., 2009. "Empirical Likelihood in Missing Data Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1492-1503.
    11. Jonathan McDonald Ladd & Gabriel S. Lenz, 2009. "Exploiting a Rare Communication Shift to Document the Persuasive Power of the News Media," American Journal of Political Science, John Wiley & Sons, vol. 53(2), pages 394-410, April.
    12. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    13. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    14. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    15. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    16. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
    17. Guido W. Imbens, 1997. "One-Step Estimators for Over-Identified Generalized Method of Moments Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(3), pages 359-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    2. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    5. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    6. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    7. Inkmann, J., 2005. "Inverse Probability Weighted Generalised Empirical Likelihood Estimators : Firm Size and R&D Revisited," Other publications TiSEM c39cff1f-16c1-4446-a83f-c, Tilburg University, School of Economics and Management.
    8. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    9. Nevo, Aviv, 2003. "Using Weights to Adjust for Sample Selection When Auxiliary Information Is Available," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 43-52, January.
    10. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    11. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    12. Nevo, Aviv, 2002. "Sample selection and information-theoretic alternatives to GMM," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 149-157, March.
    13. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    14. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    15. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    16. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    17. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    18. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    20. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:20:y:2012:i:01:p:25-46_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy