Determinants of the price of bitcoin: An analysis with machine learning and interpretability techniques
Author
Abstract
Suggested Citation
DOI: 10.1016/j.iref.2024.01.070
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016.
"The economics of BitCoin price formation,"
Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," EERI Research Paper Series EERI RP 2014/08, Economics and Econometrics Research Institute (EERI), Brussels.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," Papers 1405.4498, arXiv.org.
- Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Erratum to: Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-1, December.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018.
"On the determinants of bitcoin returns: A LASSO approach,"
Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "On the determinants of bitcoin returns: a LASSO approach," Working Paper series 18-14, Rimini Centre for Economic Analysis.
- Aslanidis, Nektarios & Bariviera, Aurelio F. & López, Óscar G., 2022.
"The link between cryptocurrencies and Google Trends attention,"
Finance Research Letters, Elsevier, vol. 47(PA).
- Aslanidis, Nektarios & Fernández Bariviera, Aurelio & López, Óscar G., 2021. "The link between cryptocurrencies and Google Trends attention," Working Papers 2072/534919, Universitat Rovira i Virgili, Department of Economics.
- Tongyu Wang & Shangmei Zhao & Guangxiang Zhu & Haitao Zheng, 2021. "A machine learning-based early warning system for systemic banking crises," Applied Economics, Taylor & Francis Journals, vol. 53(26), pages 2974-2992, June.
- Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
- Stefania Albanesi & Domonkos F. Vamossy, 2019.
"Predicting Consumer Default: A Deep Learning Approach,"
NBER Working Papers
26165, National Bureau of Economic Research, Inc.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Working Papers 2019-056, Human Capital and Economic Opportunity Working Group.
- Albanesi, Stefania & Vamossy, Domonkos, 2019. "Predicting Consumer Default: A Deep Learning Approach," CEPR Discussion Papers 13914, C.E.P.R. Discussion Papers.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Papers 1908.11498, arXiv.org, revised Oct 2019.
- Yhlas Sovbetov, 2018.
"Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero,"
Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 1-27.
- Sovbetov, Yhlas, 2018. "Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero," MPRA Paper 85036, University Library of Munich, Germany.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2022. "Explainable artificial intelligence for crypto asset allocation," Finance Research Letters, Elsevier, vol. 47(PB).
- Dean Fantazzini & Nikita Kolodin, 2020.
"Does the Hashrate Affect the Bitcoin Price?,"
JRFM, MDPI, vol. 13(11), pages 1-29, October.
- Fantazzini, Dean & Kolodin, Nikita, 2020. "Does the hashrate affect the bitcoin price?," MPRA Paper 103812, University Library of Munich, Germany.
- Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
- Pyo, Sujin & Lee, Jaewook, 2020. "Do FOMC and macroeconomic announcements affect Bitcoin prices?," Finance Research Letters, Elsevier, vol. 37(C).
- Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017.
"On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?,"
Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
- Elie Bouri & Peter Molnár & Georges Azzi & David Roubaud & Lars Ivar Hagfors, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Post-Print hal-02000697, HAL.
- Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
- Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
- Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2018.
"The Price of BitCoin: GARCH Evidence from High Frequency Data,"
Papers
1812.09452, arXiv.org.
- d'Artis Kancs & Pavel Ciaian & Miroslava Rajcaniova, 2019. "The Price of BitCoin: GARCH Evidence from High Frequency Data," JRC Research Reports JRC115098, Joint Research Centre.
- Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2018. "The Price of BitCoin: GARCH Evidence from High Frequency Data," EERI Research Paper Series EERI RP 2018/14, Economics and Econometrics Research Institute (EERI), Brussels.
- Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
- Jamal Bouoiyour & Refk Selmi, 2017.
"The Bitcoin price formation: Beyond the fundamental sources,"
Working Papers
hal-01548710, HAL.
- Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Papers 1707.01284, arXiv.org.
- Jamal Bouoiyour & Refk Selmi, 2015.
"What Does Bitcoin Look Like?,"
Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
- Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Post-Print hal-01879683, HAL.
- Lin Li, 2023. "Investigating risk assessment in post-pandemic household cryptocurrency investments: an explainable machine learning approach," Journal of Asset Management, Palgrave Macmillan, vol. 24(4), pages 255-267, July.
- Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
- Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-13, December.
- Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
- Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
- Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
- Frode Kjærland & Aras Khazal & Erlend A. Krogstad & Frans B. G. Nordstrøm & Are Oust, 2018. "An Analysis of Bitcoin’s Price Dynamics," JRFM, MDPI, vol. 11(4), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Julián A. Parra & Carlos Arango - Joaquín Bernal & José E. Gómez - Javier Gómez & Carlos León - Clara Machado & Daniel Osorio - Daniel Rojas & Nicolás Suárez - Eduardo Yanquen, 2019.
"Criptoactivos: análisis y revisión de literatura,"
Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, issue 92, pages 1-37, November.
- Julián A. Parra & Carlos Arango & Joaquín Bernal & José E. Gómez & Javier Gómez & Carlos León & Clara Machado & Daniel Osorio & Daniel Rojas & Nicolás Suárez & Eduardo Yanquen, 2019. "Criptoactivos: análisis y revisión de literatura," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 92, pages 1-37, November.
- John E. Marthinsen & Steven R. Gordon, 2022. "The Price and Cost of Bitcoin," Papers 2204.13102, arXiv.org.
- Marthinsen, John E. & Gordon, Steven R., 2022. "The price and cost of bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 280-288.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Qin, Meng & Su, Chi-Wei & Tao, Ran, 2021. "BitCoin: A new basket for eggs?," Economic Modelling, Elsevier, vol. 94(C), pages 896-907.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Zeng, Ting & Yang, Mengying & Shen, Yifan, 2020. "Fancy Bitcoin and conventional financial assets: Measuring market integration based on connectedness networks," Economic Modelling, Elsevier, vol. 90(C), pages 209-220.
- Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
- Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
- Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
- Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
More about this item
Keywords
Bitcoin; Machine learning; LSTM; Interpretability techniques;All these keywords.
JEL classification:
- C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:92:y:2024:i:c:p:123-140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.