IDEAS home Printed from https://ideas.repec.org/a/pal/buseco/v59y2024i4d10.1057_s11369-024-00376-0.html
   My bibliography  Save this article

Does the Zillow rent measure help predict CPI rent inflation?

Author

Listed:
  • N. Kundan Kishor

    (University of Wisconsin-Milwaukee)

Abstract

This paper examines the usefulness of the Zillow observed rent index (ZORI) in predicting CPI rent inflation. Using data from February 2015 to October 2023, we demonstrate that ZORI provides valuable insights into future movements in CPI rent inflation. However, its effectiveness is limited to periods when there is a significant disparity between these two rent series. By employing the Giacominiand and Rossi (2010) forecast fluctuations test, we find that, before the pandemic, there was no statistically significant difference between models that incorporated Zillow rent inflation and those that did not. However, starting in June 2020, models incorporating Zillow rent inflation began to outperform forecasting models without it in predicting CPI rent inflation. This performance advantage coincides with the two-year post-pandemic period when Zillow rent inflation significantly diverged from CPI rent inflation. The unique economic conditions following the COVID-19 pandemic highlight the potential value of ZORI in such periods, but caution is needed in generalizing these results to other periods.

Suggested Citation

  • N. Kundan Kishor, 2024. "Does the Zillow rent measure help predict CPI rent inflation?," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 59(4), pages 220-226, October.
  • Handle: RePEc:pal:buseco:v:59:y:2024:i:4:d:10.1057_s11369-024-00376-0
    DOI: 10.1057/s11369-024-00376-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s11369-024-00376-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s11369-024-00376-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter McAdam, 2023. "Comparing Measures of Rental Prices Can Inform Monetary Policy," Economic Bulletin, Federal Reserve Bank of Kansas City, pages 1-4, September.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Marijn A Bolhuis & Judd N L Cramer & Lawrence H Summers, 2022. "The Coming Rise in Residential Inflation [The repeat rent index]," Review of Finance, European Finance Association, vol. 26(5), pages 1051-1072.
    4. Kevin J. Lansing & Luiz E. Oliveira & Adam Hale Shapiro, 2022. "Will Rising Rents Push Up Future Inflation?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2022(03), pages 1-05, February.
    5. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
    6. Brent W. Ambrose & N. Edward Coulson & Jiro Yoshida, 2023. "Housing Rents and Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(4), pages 975-992, June.
    7. Brent W. Ambrose & N. Edward Coulson & Jiro Yoshida, 2015. "The Repeat Rent Index," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 939-950, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    2. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
    3. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    4. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    5. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    6. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    8. repec:hal:spmain:info:hdl:2441/74362fq3f99s299n07e84dlcib is not listed on IDEAS
    9. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    10. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    11. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    12. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    13. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    14. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    15. Stefano Puddu, 2013. "Real Sector and Banking System: Real and Feedback Effects. A Non-Linear VAR Approach," IRENE Working Papers 13-01, IRENE Institute of Economic Research.
    16. Ivan S. Maksymov, 2023. "Analogue and Physical Reservoir Computing Using Water Waves: Applications in Power Engineering and Beyond," Energies, MDPI, vol. 16(14), pages 1-26, July.
    17. Nonejad, Nima, 2022. "An interesting finding about the ability of geopolitical risk to forecast aggregate equity return volatility out-of-sample," Finance Research Letters, Elsevier, vol. 47(PB).
    18. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    19. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    20. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    21. Michele Manna & Emmanuela Bernardini & Mauro Bufano & Davide Dottori, 2013. "Modelling public debt strategies," Questioni di Economia e Finanza (Occasional Papers) 199, Bank of Italy, Economic Research and International Relations Area.

    More about this item

    Keywords

    Rent inflation forecasting; Zillow rent index; Direct forecasts;
    All these keywords.

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:buseco:v:59:y:2024:i:4:d:10.1057_s11369-024-00376-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy