IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0220.html
   My bibliography  Save this article

Sample selection bias as a specification error

Author

Listed:
  • Heckman, James

    (The University of Chicago)

Abstract

Sample selection bias as a specification error This paper discusses the bias that results from using non-randomly selected samples to estimate behavioral relationships as an ordinary specification error or «omitted variables» bias. A simple consistent two stage estimator is considered that enables analysts to utilize simple regression methods to estimate behavioral functions by least squares methods. The asymptotic distribution of the estimator is derived.

Suggested Citation

  • Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
  • Handle: RePEc:ris:apltrx:0220
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2013_3_129-137.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. James J. Heckman, 1977. "Sample Selection Bias As a Specification Error (with an Application to the Estimation of Labor Supply Functions)," NBER Working Papers 0172, National Bureau of Economic Research, Inc.
    3. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    4. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    5. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    6. Lewis, H Gregg, 1974. "Comments on Selectivity Biases in Wage Comparisons," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1145-1155, Nov.-Dec..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    2. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    3. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    4. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    5. B. Ben Halima & N. Chusseau & J. Hellier, 2013. "Skill Premia and Intergenerational Skill Transmission: The French Case," Working Papers 285, ECINEQ, Society for the Study of Economic Inequality.
    6. Torres, Miguel Matos & Clegg, L. Jeremy & Varum, Celeste Amorim, 2016. "The missing link between awareness and use in the uptake of pro-internationalization incentives," International Business Review, Elsevier, vol. 25(2), pages 495-510.
    7. Committee, Nobel Prize, 2000. "The Scientific Contributions of James Heckman and Daniel McFadden," Nobel Prize in Economics documents 2000-2, Nobel Prize Committee.
    8. Tussing, A. Dale, 1985. "Irish Medical Care Resources: An Economic Analysis," Research Series, Economic and Social Research Institute (ESRI), number GRS126.
    9. Alan Benson & Danielle Li & Kelly Shue, 2019. "Promotions and the Peter Principle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2085-2134.
    10. Seyed Morteza Emadi & Bradley R. Staats, 2020. "A Structural Estimation Approach to Study Agent Attrition," Management Science, INFORMS, vol. 66(9), pages 4071-4095, September.
    11. Schafgans, Marcia M. A., 2000. "Gender wage differences in Malaysia: parametric and semiparametric estimation," Journal of Development Economics, Elsevier, vol. 63(2), pages 351-378, December.
    12. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    13. David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
    14. Karol Wyszynski & Giampiero Marra, 2018. "Sample selection models for count data in R," Computational Statistics, Springer, vol. 33(3), pages 1385-1412, September.
    15. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Other publications TiSEM 65401dae-613b-4e10-a8ae-c, Tilburg University, School of Economics and Management.
    16. Ben-Halima, B. & Chusseau, N. & Hellier, J., 2014. "Skill premia and intergenerational education mobility: The French case," Economics of Education Review, Elsevier, vol. 39(C), pages 50-64.
    17. Luci Ellis & Jeremy Lawson & Laura Roberts-Thomson, 2003. "Housing Leverage in Australia," RBA Research Discussion Papers rdp2003-09, Reserve Bank of Australia.
    18. David Roodman, 2009. "Estimating Fully Observed Recursive Mixed-Process Models with cmp," Working Papers 168, Center for Global Development.
    19. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    20. Jan Willem Nijenhuis, 2021. "Estimation of ordered probit model with endogenous switching between two latent regimes," 2021 Stata Conference 22, Stata Users Group.

    More about this item

    Keywords

    sample selection bias; specification error;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy