IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/32952.html
   My bibliography  Save this paper

Horowitz-Manski-Lee Bounds With Multilayered Sample Selection

Author

Listed:
  • Kory Kroft
  • Ismael Mourifié
  • Atom Vayalinkal

Abstract

This paper investigates the causal effect of job training on wage rates in the presence of firm heterogeneity. When training affects the sorting of workers to firms, sample selection is no longer binary but is “multilayered”. This paper extends the canonical Heckman (1979) sample selection model – which assumes selection is binary – to a setting where it is multilayered. In this setting Lee bounds set identifies a total effect that combines a weighted-average of the causal effect of job training on wage rates across firms with a weighted-average of the contrast in wages between different firms for a fixed level of training. Thus, Lee bounds set identifies a policy-relevant estimand only when firms pay homogeneous wages and/or when job training does not affect worker sorting across firms. We derive analytic expressions for sharp bounds for the causal effect of job training on wage rates at each firm that leverage information on firm-specific wages. We illustrate our partial identification approach with two empirical applications to job training experiments. Our estimates demonstrate that even when conventional Lee bounds are strictly positive, our within-firm bounds can be tight around 0, showing that the canonical Lee bounds may capture only a pure sorting effect of job training.

Suggested Citation

  • Kory Kroft & Ismael Mourifié & Atom Vayalinkal, 2024. "Horowitz-Manski-Lee Bounds With Multilayered Sample Selection," NBER Working Papers 32952, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:32952
    Note: LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w32952.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Huber & Lukas Laffers & Giovanni Mellace, 2017. "Sharp IV Bounds on Average Treatment Effects on the Treated and Other Populations Under Endogeneity and Noncompliance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 56-79, January.
    2. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    3. François Gerard & Lorenzo Lagos & Edson Severnini & David Card, 2021. "Assortative Matching or Exclusionary Hiring? The Impact of Employment and Pay Policies on Racial Wage Differences in Brazil," American Economic Review, American Economic Association, vol. 111(10), pages 3418-3457, October.
    4. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying-Ying Lee & Chu-An Liu, 2024. "Lee Bounds with a Continuous Treatment in Sample Selection," Papers 2411.04312, arXiv.org, revised Feb 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    2. Federico A. Bugni & Mengsi Gao & Filip Obradovic & Amilcar Velez, 2024. "Identification and Inference on Treatment Effects under Covariate-Adaptive Randomization and Imperfect Compliance," Papers 2406.08419, arXiv.org, revised Jun 2024.
    3. Nadja van 't Hoff, 2023. "Identifying Causal Effects of Discrete, Ordered and ContinuousTreatments using Multiple Instrumental Variables," Papers 2311.17575, arXiv.org, revised Oct 2024.
    4. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    5. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    6. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    7. Delgado, Miguel A & Robinson, Peter M, 1992. "Nonparametric and Semiparametric Methods for Economic Research," Journal of Economic Surveys, Wiley Blackwell, vol. 6(3), pages 201-249.
    8. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    9. Arndt Reichert & Harald Tauchmann, 2014. "When outcome heterogeneously matters for selection: a generalized selection correction estimator," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 762-768, March.
    10. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    11. Amos Golan & Enrico Moretti & Jeffrey M.Perloff, 2004. "A Small-Sample Estimator for the Sample-Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 71-91.
    12. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    13. Kenneth Y. Chay & Jonathan Guryan & Bhashkar Mazumder, 2014. "Early Life Environment and Racial Inequality in Education and Earnings in the United States," Working Paper Series WP-2014-28, Federal Reserve Bank of Chicago.
    14. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    16. Tahir Andrabi & Jishnu Das & Asim Ijaz Khwaja, 2012. "What Did You Do All Day?: Maternal Education and Child Outcomes," Journal of Human Resources, University of Wisconsin Press, vol. 47(4), pages 873-912.
    17. Giovanni Mellace & Roberto Rocci, 2011. "Principal Stratification in sample selection problems with non normal error terms," CEIS Research Paper 194, Tor Vergata University, CEIS, revised 02 May 2011.
    18. Martin Huber, 2010. "Identification of average treatment effects in social experiments under different forms of attrition," University of St. Gallen Department of Economics working paper series 2010 2010-22, Department of Economics, University of St. Gallen.
    19. Patrick Bayer & Shakeeb Khan & Christopher Timmins, 2008. "Nonparametric Identification and Estimation in a Generalized Roy Model," NBER Working Papers 13949, National Bureau of Economic Research, Inc.
    20. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • H0 - Public Economics - - General
    • H50 - Public Economics - - National Government Expenditures and Related Policies - - - General
    • J0 - Labor and Demographic Economics - - General
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J32 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Nonwage Labor Costs and Benefits; Retirement Plans; Private Pensions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy