Inclusione (matematica)

relazione binaria tra insiemi
(Reindirizzamento da Sottoinsieme)

In matematica, e in particolare in teoria degli insiemi, l'inclusione, indicata con , è una relazione binaria tra insiemi definita nel seguente modo: "l'insieme è contenuto o incluso nell'insieme se, per ogni elemento , se appartiene a allora appartiene ad ". In simboli, dati due insiemi e , si ha:

Siano e , allora è un sottoinsieme di .
[1]

L'insieme si dice sottoinsieme di .

Si parla, più propriamente, di inclusione stretta per indicare che ogni elemento di è anche elemento di ma che esistono elementi di che non sono elementi di .

Nel caso in cui tutti gli elementi di appartengono anche a si parla di sottoinsieme improprio (in altre parole ogni insieme è un sottoinsieme improprio di sé stesso). Si parla di sottoinsieme proprio se almeno un elemento di non è compreso nell'insieme , cioè nel caso dell'inclusione stretta.

Il simbolo usato per indicare un sottoinsieme è , mentre il simbolo per indicare un sottoinsieme proprio è . Tuttavia spesso viene usata una notazione alternativa che indica con un sottoinsieme e con un sottoinsieme proprio (quest'ultima si usa anche quando si vuole mettere in evidenza che non coincide con ).

Analogamente si definisce il concetto di sovrainsieme; il simbolo usato è (oppure ) per il sovrainsieme, e (oppure ) per il sovrainsieme proprio.

Proprietà

modifica
  • L'inclusione è una relazione d'ordine largo, cioè è una relazione riflessiva, antisimmetrica e transitiva; quindi valgono:
  (riflessività)
  (antisimmetria)
  (transitività)

In particolare, l'antisimmetria della relazione viene tipicamente sfruttata per definire l'uguaglianza di   e  :

"  è uguale   se e solo se   è contenuto in   e   è contenuto in  ",

cioè:

 
  • L'insieme vuoto   è sottoinsieme di ogni altro insieme, cioè "per ogni insieme   si ha che  ".
  • Valgono
 
 
  • Se  , allora:
 
 

Distinzione fra inclusione ed appartenenza

modifica

Bisogna fare molta attenzione a non confondere il concetto di inclusione con quello di appartenenza.

Esempi:

  • è esatta:   - cioè   appartiene all'insieme  
  • è errata:   - cioè non si può dire che   è incluso nell'insieme  
  • è esatta:   - cioè il singoletto di   è incluso nell'insieme  

Il simbolo ⊂, così come ad esempio anche i simboli , , , venne introdotto per la prima volta da Giuseppe Peano nel Formulario mathematico, opera pubblicata nel 1895.

  1. ^ Eventualmente si deve aggiungere   per avere l'inclusione propria.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàGND (DE4184620-5
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy