본문으로 이동

피어슨 상관 계수

위키백과, 우리 모두의 백과사전.

통계학에서 , 피어슨 상관 계수(Pearson Correlation Coefficient ,PCC)란 두 변수 XY 간의 선형 상관 관계를 계량화한 수치다. 피어슨 상관 계수는 코시-슈바르츠 부등식에 의해 +1과 -1 사이의 값을 가지며, +1은 완벽한 양의 선형 상관 관계, 0은 선형 상관 관계 없음, -1은 완벽한 음의 선형 상관 관계를 의미한다. 일반적으로 상관관계는 피어슨 상관관계를 의미하는 상관계수이다.

서로 다른 상관 계수 값 (ρ)을 갖는 산포도 다이어그램의 예
여러 데이터셋와 각 셋의 xy 의 상관 계수. 상관 관계는 선형 관계의 비선형성 및 방향을 반영하지만 그 관계의 기울기 또는 비선형 관계의 여러 측면을 반영하지 않는다. NB : 중앙의 그림은 기울기가 0이지만이 경우 Y 의 분산이 0이므로 상관 계수가 정의되지 않는다.

정의

[편집]

표본(sample) 피어슨 상관 계수는 등간척도(간격척도)나 비례척도(비율척도)의 데이타에서 두 변수의 공분산(covariance) 을 각각의 표준 편차의 곱으로 나눈 이다.

따라서

모집단의 경우

[편집]

피어슨의 상관 계수는 모집단에 적용될 때 일반적으로 ρ (그리스문자,로)로 표시되며 모집단 상관 계수 또는 모집단 피어슨 상관 계수라고 할 수 있다.

결정계수

[편집]

피어슨의 상관 계수를 제곱해줌으로써 결정계수를 얻을수있다.

표본 피어슨의 상관 계수 로부터 표본 결정계수 을 얻을수있다.
모집단 피어슨의 상관 계수 로부터 모집단 결정계수 을 얻을수있다.

컴퓨팅 계산

[편집]

컴퓨팅 프로그램에서 일반적인 상관관계 분석 함수로서 피어슨 상관계수가 사용되며 스프레드 시트에서는 Correl()함수를 사용할 수 있다.[1] SPSSPSPP에서는 이변량 상관분석(bivariate analysis 또는 bivariate correlation analysis)등에서 보편적으로 이용된다.

같이 보기

[편집]

각주

[편집]
  1. (리브레오피스-스프레드 시트) CORREL(A,B)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy