본문으로 이동

지수 함수

위키백과, 우리 모두의 백과사전.

y = ex의 그래프[1]

지수 함수(指數函數, 영어: exponential function)란 거듭제곱지수를 변수로 하고, 정의역을 실수 전체로 정의하는 초월함수이다. 로그 함수역함수이다.

정의

[편집]

를 양의 상수, 를 모든 실수 값을 취하는 변수라고 할 때 로 주어지는 함수를 말한다. 예를 들어, 함수 는 지수함수다. 자연로그역함수로 주어지는 지수함수는 또는 와 같이 쓴다. 이때 를 '자연로그의 밑'이라 한다. 지수함수 역시 그래프로 나타낼 수 있으며, 실변수 의 함수로서 그래프는 항상 양수이고, 왼쪽에서 오른쪽으로 증가한다. 이때 그래프는 축과 만나지 않지만, 축에 점점 접근해간다.

a가 양의 실수, x가 임의의 실수일 때, a, x를 지수로 하는 지수함수를 ax 로 쓴다. 특별히 지수가 자연수(혹은 유리수)일 때, 이 함수는 a의 거듭제곱과 일치한다. 지수함수는 다음의 공리에 의해 정의된다.

  • axR에서 (0, ∞) 로의 연속사상이다.
  • a0 = 1
  • ap+q = apaq

극한

[편집]

함수 에서

일 때 위 지수함수의 극한은

, 이고,

일 때 위 지수함수의 극한은

, 이다.

그리고 일 때 위 지수함수의 극한은

, 이다.

미분

[편집]

밑이 e 인 지수 함수 ex의 도함수는 ex 자신이 된다. ex 로 쓰기도 한다. 임의의 지수함수 ax자연로그 ln 을 사용하여, 로 쓸 수 있다. 따라서, 일반적인 지수함수 ax의 도함수는 (ln a)ax = ax ln a가 된다.

미분방정식 특수해가 된다. 이는 반대로 미분방정식 를 만족하는 초기치문제의 해로 지수함수를 정의할 수도 있다는 의미를 담는다.

해석학에서 지수 함수는 주로 밑이 e인 것만을 가리킨다.

음함수 미분을 이용한 지수함수의 미분

[편집]

음함수 미분을 이용하여 의 해를 구할 수 있다.

라 하면 다음이 성립한다:

좌변을 에 대해 미분하면:


로그함수의 역함수로서의 정의

[편집]

로그함수정적분을 이용하여 정의할 경우, 지수함수는 거듭제곱이 아닌 로그함수역함수로 정의된다.

자연로그를 다음과 같이 정의하자.

이때 강한 증가 함수이며 치역이 실수 전체이므로 역함수가 존재한다. 이때의 역함수라고 표기한다.

이 함수의 도함수는 역함수의 미분에 의하여

즉, 이다. 또한, 이므로, 이다.

그리고 로그함수와의 역함수 관계를 이용하여 다음 등식이 성립함을 간단히 보일 수 있다.

로 놓으면
이므로 로그의 성질에 의하여
따라서 가 성립한다.

로그함수 는 정의역 전체에서 연속 함수이므로 중간값 정리에 의하여 방정식 를 만족하는 해 가 존재하며, 단사함수이므로 실수 는 단 한개만 존재한다. 방정식 의 해를 라 하자.

이제 로 놓고 이것을 지수함수로 정의한다.

수학적 귀납법을 이용하면 자연수일 때 임을 보일 수 있다.

이제 일반적인 밑을 가진 지수를 로 정의하자.

마찬가지로 수학적 귀납법을 이용하여 자연수 에 대하여 임을 보일 수 있다.

증명은 다음과 같다.

1에 대하여 성립
에 대하여 성립한다는 가정 아래, 에 대하여 성립
양변에 a를 곱하면
위 식의 좌변은 다음과 같이 정리된다.
따라서 수학적 귀납법에 의하여 자연수 에 대하여 로 정의된 는 a를 x번 곱한 것과 같다.

같이 보기

[편집]

각주

[편집]

외부 링크

[편집]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy