본문으로 이동

차원

위키백과, 우리 모두의 백과사전.

0차원 부터 1차원 선분, 2차원 사각형, 3차원 정육면체와 4차원 초입방체까지 전개하는 모습
1차원부터 6차원까지의 초입방체의 모습

수학에서, 어떤 대상의 모든 원소들을, 몇 개 (또는 무한대)의 정해진 원소들 을 조합해서 모두 나타낼 수 있을 때, 그 정해진 원소들을 기저라고 부르며, 기저 원소의 수를 차원(次元)이라고 한다. 이 개념은 수학의 여러 분야에서 각 분야에 맞게 정의되어 있다.

예를 들어, 평면에 포함된 한 점의 위치를 지정하는 데에는 두 개의 숫자가 필요하다. (보다 구체적으로 말해, 지구의 일부분을 묘사한 지도에서 특정한 위치를 찾아내기 위해서는 위도경도라는 두 개의 숫자를 알아야 한다.) 이 경우 모두 2차원이다. 모든 2차 실수 계수 다항식들의 집합 의 원소는 의 조합으로 모두 표현된다. 따라서 이 경우는 3차원이다.

차원의 종류

[편집]

수학에서 차원 개념이 정의된 분야는 아주 다양하며, 하나의 정의가 이 여러 필요를 전부 만족시키는 것은 불가능하다. 아래는 수학의 여러 분야에서 쓰이는 차원 개념들의 목록이다.

벡터 공간

[편집]

선형대수학에서 다루는 공간은 선형 공간(벡터 공간)이다. 선형 공간에는 기저라는 부분 집합이 존재하며, 해당 선형 공간의 모든 원소들은 기저 원소들의 선형 결합이다. 기저의 원소 수(보다 일반적으로는 기저의 기수)를 그 선형 공간의 차원이라고 한다. 모든 2차원 실벡터들은 선형 공간 이며, 모든 원소에 대해 이 성립하므로 는 이 선형 공간의 기저이며 2차원이다. 모든 2차 실수 계수 다항식들은 선형 공간 이며 는 이 공간의 기저가 되며 3차원이다.

다양체

[편집]

흔히 생각하는 기하학적 대상은 대부분 다양체이다. 이는 전부 근본적으로는 n차원 유클리드 공간 En의 차원 개념에서 유래한 것이다. 점 E0은 0차원이고, 직선 E1은 1차원이며, 평면 E2은 2차원이다. 보다 일반적으로, En은 n차원이다. 또한 4차원 초입방체는 4차원 대상의 좋은 예가 된다.

연결 위상다양체는 국소적으로 n차원 유클리드 공간과 위상동형이며, 이때 이 다양체를 n차원이라고 한다. 이 방법으로, 모든 연결 위상다양체에 대해 차원이 유일하게 정의됨을 보일 수 있다.

위상수학에서 1차원 및 2차원의 다양체론은 대체로 간단하고, 차원이 5 이상인 경우는 많은 수의 차원 상에서의 작업을 통해 문제를 간략화시킬 수 있는 반면, 3차원과 4차원의 경우가 가장 어려운 경우가 많다. 이는 푸앵카레 추측을 비롯한 여러 경우에서 나타난 현상이다.

하우스도르프 차원

[편집]

위상 공간 와 반지름 이 주어졌을 때, 개의 으로 덮을 수 있다고 하자. 하우스도르프 차원 으로 갈 때 로 수렴하게 만드는 유일한 실수 를 말한다.

르베그 덮개 차원

[편집]

르베그 덮개 차원은 차원의 위상수학적 정의에 해당한다. 위상 공간 르베그 덮개 차원 는 다음 조건을 만족시키는 최소의 정수 이다.

  • 임의의 열린 덮개 에 대하여, 의 열린 세분 가 존재한다.

만약 위 조건을 만족시키는 정수가 없다면, 로 정의한다.

크룰 차원

[편집]

가환환크룰 차원볼프강 크룰 (Wolfgang Krull)의 이름을 따 지어진 개념으로, 소 아이디얼들의 강한 포함관계(strict inclusion)에 의한 사슬의 길이가 가질 수 있는 극대값으로 정의된다.

낮은 차원

[편집]

0차원의 폴리토프는 점이다.[1]

수학 이외에서 차원 개념의 적용

[편집]

물리학

[편집]

공간 차원

[편집]

고전 물리학은 물리 우주가 3개의 차원을 갖는 것으로 묘사한다. 공간의 각 점에서 움직일 수 있는 기본 방향을 위-아래, 왼쪽-오른쪽, 앞-뒤의 3가지로 생각하면 모든 그 이외 다른 방향으로의 움직임 또한 이 세 가지 방향으로의 움직임을 조합한 것으로 표현할 수 있기 때문이다. 특히 왼쪽을 양의 방향이라고 할 때, 오른쪽으로의 움직임은 왼쪽으로 음수만큼 움직이는 것과 같다고 본다. 즉, 고전 물리학은 3차원 유클리드 공간이라는 내적 공간을 물리적 공간의 수학적 구조로 보았다.

시간 차원

[편집]

흔히 시간을 네 번째 차원이라고 말하기도 한다. 하지만 모든 운동은 시간축 상에서 한 방향으로만 일어나는 것으로 인식된다는 점에서 시간은 물리학적으로 상당한 차이점이 있다. 물론 수학적 구조상으로는 입자가 움직이는 공간의 세 축과 시간을 모두 실수 직선들로 보고 4차원 공간 로 보면 된다. 그러나 ,입자가 움직일 수 있는 공간과 시간은 물리학적 해석에 큰 차이가 있다. 따라서 아리스토텔레스와 이후의 고전 물리학에서는 시간을 네 번째 차원이라고 생각하지 않는다.

물리학에서 처음으로 시간 차원을 제 4차원으로 본 이론은 특수상대성이론이다. 특수상대성이론에서는 4차원 다양체인 민코프스키 공간을 우주의 수학적 구조로 본다. 민코프스키 공간에 민코프스키 내적을 부여한 공간이다. 민코프스키 공간은 기하학적으로 유클리드 공간과 다르며, 특수상대성이론의 물리 현상들을 설명하기에 적절하다.

추가 차원

[편집]

물리학의 끈 이론이나 M-이론 등은 우리 우주가 익히 알려진 입자가 움직일 수 있는 3개의 차원 외에 아원자 규모의 추가 차원을 갖고 있어서, 실제의 시공간이 10차원이나 11차원일 것으로 예측하고 있다. 이는 현 시점에서 실험적으로 검증되지 않았다.

칼루자-클라인 이론에 따르면 공간은 3차원이 아니라 5차원이라고 한다. 그들은 중력과 전자기력을 5차원 이론으로 통합하려고 했다.

컴퓨터 그래픽

[편집]

같이 보기

[편집]

각주

[편집]
  1. Wolcott, Luke; McTernan, Elizabeth (2012). 〈Imagining Negative-Dimensional Space〉 (PDF). Bosch, Robert; McKenna, Douglas; Sarhangi, Reza. 《Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture》. Phoenix, Arizona, USA: Tessellations Publishing. 637–642쪽. ISBN 978-1-938664-00-7. ISSN 1099-6702. 2015년 6월 26일에 원본 문서 (PDF)에서 보존된 문서. 2015년 7월 10일에 확인함. 

외부 링크

[편집]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy