Skip to content

930. Binary Subarrays With Sum

Description

Given a binary array nums and an integer goal, return the number of non-empty subarrays with a sum goal.

A subarray is a contiguous part of the array.

 

Example 1:

Input: nums = [1,0,1,0,1], goal = 2
Output: 4
Explanation: The 4 subarrays are bolded and underlined below:
[1,0,1,0,1]
[1,0,1,0,1]
[1,0,1,0,1]
[1,0,1,0,1]

Example 2:

Input: nums = [0,0,0,0,0], goal = 0
Output: 15

 

Constraints:

  • 1 <= nums.length <= 3 * 104
  • nums[i] is either 0 or 1.
  • 0 <= goal <= nums.length

Solutions

Solution 1

1
2
3
4
5
6
7
8
9
class Solution:
    def numSubarraysWithSum(self, nums: List[int], goal: int) -> int:
        cnt = Counter({0: 1})
        ans = s = 0
        for v in nums:
            s += v
            ans += cnt[s - goal]
            cnt[s] += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int numSubarraysWithSum(int[] nums, int goal) {
        int[] cnt = new int[nums.length + 1];
        cnt[0] = 1;
        int ans = 0, s = 0;
        for (int v : nums) {
            s += v;
            if (s - goal >= 0) {
                ans += cnt[s - goal];
            }
            ++cnt[s];
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
public:
    int numSubarraysWithSum(vector<int>& nums, int goal) {
        int cnt[nums.size() + 1];
        memset(cnt, 0, sizeof cnt);
        cnt[0] = 1;
        int ans = 0, s = 0;
        for (int& v : nums) {
            s += v;
            if (s - goal >= 0) {
                ans += cnt[s - goal];
            }
            ++cnt[s];
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
func numSubarraysWithSum(nums []int, goal int) (ans int) {
    cnt := map[int]int{0: 1}
    s := 0
    for _, v := range nums {
        s += v
        ans += cnt[s-goal]
        cnt[s]++
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * @param {number[]} nums
 * @param {number} goal
 * @return {number}
 */
var numSubarraysWithSum = function (nums, goal) {
    const cnt = new Array(nums.length + 1).fill(0);
    cnt[0] = 1;
    let ans = 0;
    let s = 0;
    for (const v of nums) {
        s += v;
        if (s >= goal) {
            ans += cnt[s - goal];
        }
        ++cnt[s];
    }
    return ans;
};

Solution 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution:
    def numSubarraysWithSum(self, nums: List[int], goal: int) -> int:
        i1 = i2 = s1 = s2 = j = ans = 0
        n = len(nums)
        while j < n:
            s1 += nums[j]
            s2 += nums[j]
            while i1 <= j and s1 > goal:
                s1 -= nums[i1]
                i1 += 1
            while i2 <= j and s2 >= goal:
                s2 -= nums[i2]
                i2 += 1
            ans += i2 - i1
            j += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
    public int numSubarraysWithSum(int[] nums, int goal) {
        int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
        int n = nums.length;
        while (j < n) {
            s1 += nums[j];
            s2 += nums[j];
            while (i1 <= j && s1 > goal) {
                s1 -= nums[i1++];
            }
            while (i2 <= j && s2 >= goal) {
                s2 -= nums[i2++];
            }
            ans += i2 - i1;
            ++j;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
public:
    int numSubarraysWithSum(vector<int>& nums, int goal) {
        int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
        int n = nums.size();
        while (j < n) {
            s1 += nums[j];
            s2 += nums[j];
            while (i1 <= j && s1 > goal) s1 -= nums[i1++];
            while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
            ans += i2 - i1;
            ++j;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
func numSubarraysWithSum(nums []int, goal int) int {
    i1, i2, s1, s2, j, ans, n := 0, 0, 0, 0, 0, 0, len(nums)
    for j < n {
        s1 += nums[j]
        s2 += nums[j]
        for i1 <= j && s1 > goal {
            s1 -= nums[i1]
            i1++
        }
        for i2 <= j && s2 >= goal {
            s2 -= nums[i2]
            i2++
        }
        ans += i2 - i1
        j++
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * @param {number[]} nums
 * @param {number} goal
 * @return {number}
 */
var numSubarraysWithSum = function (nums, goal) {
    let i1 = 0,
        i2 = 0,
        s1 = 0,
        s2 = 0,
        j = 0,
        ans = 0;
    const n = nums.length;
    while (j < n) {
        s1 += nums[j];
        s2 += nums[j];
        while (i1 <= j && s1 > goal) s1 -= nums[i1++];
        while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
        ans += i2 - i1;
        ++j;
    }
    return ans;
};

Comments

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy