Abstract
Environmental vulnerability is an important tool to understand the natural and anthropogenic impacts associated with the susceptibility to environmental damage. This study aims to assess the environmental vulnerability of the Doce River basin in Brazil through Multicriteria Decision Analysis based on Geographic Information Systems (GIS-MCDA). Natural factors (slope, elevation, relief dissection, rainfall, pedology, and geology) and anthropogenic factors (distance from urban centers, roads, mining dams, and land use) were used to determine the environmental vulnerability index (EVI). The EVI was classified into five classes, identifying associated land uses. Vulnerability was verified in water resource management units (UGRHs) and municipalities using hot spot analysis. The study employed the water quality index (WQI) to assess the EVI and global sensitivity analysis (GSA) to evaluate the model input parameters that most influence the basin’s environmental vulnerability. The results showed that the regions near the middle Doce River were considered environmentally more vulnerable, especially the UGRHs Guandu, Manhuaçu, and Caratinga; and 35.9% of the basin has high and very high vulnerabilities. Hot spot analysis identified regions with low EVI values (cold spot) in the north and northwest, while areas with high values (hot spot) were concentrated mainly in the middle Doce region. Water monitoring stations with the worst WQI values were found in the most environmentally vulnerable areas. The GSA determined that land use and slope were the primary factors influencing the model’s response. The results of this study provide valuable information for supporting environmental planning in the Doce River basin.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data relevant to this study is included in the article or supplementary information. Other data may be made available by the corresponding author upon reasonable request.
References
Abreu, M. C., de Souza Fraga, M., de Almeida, L. T., Silva, F. B., Cecílio, R. A., Lyra, G. B., & Delgado, R. C. (2022). Streamflow in the Sapucaí River watershed, Brazil: Probabilistic modeling, reference streamflow, and regionalization. Physics and Chemistry of the Earth, Parts a/b/c, 126, 103133. https://doi.org/10.1016/J.PCE.2022.103133
AGERH. (2020). Agência Estadual de Recursos Hídricos. Qualidade das Águas do Estado do Espírito Santo. https://servicos.agerh.es.gov.br/iqa/home.php. Accessed 25 June 2019.
Aires, U. R. V., Santos, B. S. M., Coelho, C. D., da Silva, D. D., & Calijuri, M. L. (2018). Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy. https://doi.org/10.1016/j.landusepol.2017.10.026
Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojteková, J., Costache, R., Linh, N. T. T., Nguyen, H. Q., Ahmad, A., & Ghorbani, M. A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecological Indicators, 117, 106620. https://doi.org/10.1016/j.ecolind.2020.106620
Almeida, C. A., de Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., Ribeiro, L., & de Queiroz, M. E. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin – Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/J.CHEMOSPHERE.2018.06.071
Alvarado, A., Esteller, M. V., Quentin, E., & Expósito, J. L. (2016). Multi-criteria decision analysis and GIS approach for prioritization of drinking water utilities protection based on their vulnerability to contamination. Water Resources Management, 30(4), 1549–1566. https://doi.org/10.1007/s11269-016-1239-4
ANA. (2016). Agência Nacional de Águas. Encarte Especial sobre a Bacia do Rio Doce. Rompimento da barragem em Mariana/MG. Superintendência de Planejamento de Recursos Hídricos - SPR. Brasília, DF.
ANA. (2017). Agência Nacional de Águas e Saneamento. Catálogo de Metadados da ANA. Bases Hidrográficas Ottocodificadas Multiescalas. https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/f7b1fc91-f5bc-4d0d-9f4f-f4e5061e5d8f. Accessed 11 Jul 2021.
ANA. (2019). Agência Nacional de Águas. HIDROWEB - Sistema de Informações Hidrológicas. http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf. Accessed 25 June 2019.
Anjinho, P. D. S., Barbosa, M. A. G. A., Costa, C. W., & Mauad, F. F. (2021). Environmental fragility analysis in reservoir drainage basin land use planning: A Brazilian basin case study. Land Use Policy, 100, 104946. https://doi.org/10.1016/j.landusepol.2020.104946
ANM. (2020). Agência Nacional de Mineração. Relatório Anual de Segurança de Barragens de Mineração 2019. Brasília, DF.
ANM. (2021). Agência Nacional de Mineração. Cadastro Nacional de Barragens de Mineração. https://app.anm.gov.br/SIGBM/Publico/Mapa. Accessed 21 Sep 2021.
Apan, A. A. (1997). Land cover mapping for tropical forest rehabilitation planning using remotely-sensed data. International Journal of Remote Sensing, 18(5), 1029–1049. https://doi.org/10.1080/014311697218557
Baležentis, T., & Streimikiene, D. (2017). Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy, 185, 862–871. https://doi.org/10.1016/J.APENERGY.2016.10.085
Batiot, B., Rogaume, T., Collin, A., Richard, F., & Luche, J. (2016). Sensitivity and uncertainty analysis of Arrhenius parameters in order to describe the kinetic of solid thermal degradation during fire phenomena. Fire Safety Journal, 82, 76–90. https://doi.org/10.1016/J.FIRESAF.2016.03.007
BRASIL. (2012). LEI No 12.651, DE 25 DE MAIO DE 2012. http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm. Accessed 09 Aug 2020.
Brito, M. M. D., Almoradie, A., & Evers, M. (2019). Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. International Journal of Geographical Information Science, 33(9), 1788–1806. https://doi.org/10.1080/13658816.2019.1599125
Buckley, S. M., Agram, P. S., Belz, J. E., Crippen, R. E., Gurrola, E. M., Hensley, S., Kobrick, M., Lavalle, M., Martin, J. M., Neumann, M., Nguyen, Q. D., Rosen, P. A., Shimada, J. G., Simard, M., & Tung, W. W. (2020). NASADEM: User guide. Nasa/Jpl, January, 48. https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf. Accessed 28 Jul 2023
Calegario, A. T. (2021). Metodologia para caracterização e mapeamento da intensidade de uso da terra (p. 168). Tese (Doutorado em Engenharia Agrícola) - Universidade de Viçosa.
Campos, J. A., da Silva, D. D., Moreira, M. C., de Filho, F. C. M., & M. (2021). Environmental fragility and land use capacity as instruments of environmental planning, Caratinga River basin, Brazil. Environmental Earth Sciences, 80(7), 1–13. https://doi.org/10.1007/s12665-021-09553-2
Caprioli, C., & Bottero, M. (2021). Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures. Land Use Policy, August, 105147. https://doi.org/10.1016/j.landusepol.2020.105147
Carmo, F. F. D., Kamino, L. H. Y., Junior, R. T., Campos, I. C. D., Carmo, F. F. D., Silvino, G., de Castro, K. J. D. S. X., Mauro, M. L., Rodrigues, N. U. A., Miranda, M. P. D. S., & Pinto, C. E. F. (2017). Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15(3), 145–151. https://doi.org/10.1016/J.PECON.2017.06.002
CBH-Doce. (2021). Comitê da Bacia Hidrográfica do Rio Doce. UGRHs. Disponível em: https://sigaaguas.org.br/home/apps/repositorio/?group=agedoce. Accessed 11 Dec 2021.
CBH-DOCE. (2016a). Comitê da Bacia Hidrográfica do Rio Doce. A bacia hidrográfica do Rio Doce. http://www.cbhdoce.org.br/institucional/a-bacia . Accessed 08 June 2019.
CBH- DOCE. (2016b). Comitê da Bacia Hidrográfica do Rio Doce. Programa Produtor de Água. https://www.cbhdoce.org.br/programas-e-projetos/p24-programa-produtor-de-agua. Accessed 09 Aug 2022.
Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12), 1582–1591. https://doi.org/10.1016/J.ENVSOFT.2010.06.001
Crepani, E., Medeiros, J. S., Filho, P. H., Gallotti, T., Valdete, F., Cláudio, D., & Faria Barbosa, C. (2001). Sensoriamento remoto e geoprocessamento aplicados ao zoneamento ecológico-econômico e ao ordenamento territorial. INPE,124 p.
Cruz, B. B., Manfré, L. A., Ricci, D. S., Brunoro, D., Appolinario, L., & Quintanilha, J. A. (2017). Environmental fragility framework for water supply systems: A case study in the Paulista Macro Metropolis area (SE Brazil). Environmental Earth Sciences, 76(12), 441. https://doi.org/10.1007/s12665-017-6778-3
D’Andrea, M. F., Letourneau, G., Rousseau, A. N., & Brodeur, J. C. (2020). Sensitivity analysis of the Pesticide in Water Calculator model for applications in the Pampa region of Argentina. Science of the Total Environment, 698, 134232. https://doi.org/10.1016/J.SCITOTENV.2019.134232
DNPM. (2017). Departamento Nacional de Produção Mineral. Portaria no 70.389, de 17 de maio de 2017, segurança de barragens de mineração. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/20222904/do1-2017-05-19-portaria-n-70-389-de-17-de-maio-de-2017-20222835. Accessed 21 Sept 2021.
Eastman, J. R. (2012). IDRISI Selva Tutorial. Clark University, 354 p.
ECOPLAN-LUME. (2010). Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce. Consórcio Ecoplan/LUME, v1., p. 472. https://www.cbhdoce.org.br//wp-content/uploads/2016/12/PIRH_Doce_Volume_I.pdf. Accessed 25 June 2019.
EMBRAPA. (2018). Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos (5th ed.). EMBRAPA, Brasília, 356 p.
Felippe, M. F., Junior, A. P. M., Mendes, L. C., Carneiro, P. S., & Gontijo, B. M. (2016). Conexões geo-históricas e contemporâneas entre ocupação territorial, degradação ambiental e rarefação hídrica na Bacia do Rio Doce. Revista Geografias, 203–222. https://doi.org/10.35699/2237-549X..13474
Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-Filho, E. I., Veloso, G. V., Fraga, M. D. S., & Ferreira, L. B. (2021). Machine learning models for streamflow regionalization in a tropical watershed. Journal of Environmental Management, 280, 111713. https://doi.org/10.1016/J.JENVMAN.2020.111713
Fraga, M. D. S., da Silva, D. D., Elesbon, A. A. A., & Guedes, H. A. S. (2019). Methodological proposal for the allocation of water quality monitoring stations using strategic decision analysis. Environmental Monitoring and Assessment, 191(12), 776. https://doi.org/10.1007/s10661-019-7974-2
Fraga, M. D. S., da Silva, D. D., Reis, G. B., Guedes, H. A. S., & Elesbon, A. A. A. (2021). Temporal and spatial trend analysis of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environment, Development and Sustainability, 23(8), 12124–12150. https://doi.org/10.1007/s10668-020-01160-8
França, L. C. D. J., Lopes, L. F., Morais, M. S. D., Lisboa, G. D. S., Rocha, S. J. S. D., Junior, V. T. M. D. M., Santana, R. C., & Mucida, D. P. (2022). Environmental fragility zoning using GIS and AHP modeling: Perspectives for the conservation of natural ecosystems in Brazil. Conservation, 2, 349–366. https://doi.org/10.3390/conservation2020024
Furlan, A., Bonotto, D. M., & Gumiere, S. J. (2011). Development of environmental and natural vulnerability maps for Brazilian coastal at São Sebastião in São Paulo State. Environmental Earth Sciences, 64(3), 659–669. https://doi.org/10.1007/s12665-010-0886-7
GEE. (2019). Google Earth Engine. Introduction: Google Earth Engine API - Google Developers. https://earthengine.google.com/. Accessed 20 Aug 2019.
Getis, A., & Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. In Perspectives on spatial data analysis. Advances in spatial science (pp. 127–145). Springer. https://doi.org/10.1007/978-3-642-01976-0_10/COVER
Gómez-Delgado, M., & Tarantola, S. (2006). GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20(4), 449–466. https://doi.org/10.1080/13658810600607709
Guimarães, F. S., Cordeiro, C. M., Bueno, G. T., Carvalho, V. L. M., & Nero, M. A. (2017). Uma proposta para automatização do Índice de dissecação do relevo. Revista Brasileira de Geomorfologia, 18(1), 155–167. https://doi.org/10.20502/rbg.v18i1.1163
IBGE. (2019a). Instituto Brasileiro de Geografia e Estatística. Mapa digital de solos do Brasil. Escala 1:250.000. https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/vetores/escala_250_mil/. Accessed 25 June 2019.
IBGE. (2019b). Instituto Brasileiro de Geografia e Estatística. Mapa geológico digital do Brasil. Escala 1:250,000. Rio Janeiro. https://geoftp.ibge.gov.br/informacoes_ambientais/geologia/levantamento_geologico/vetores/escala_250_mil/. Accessed 25 June 2019.
IBGE. (2019c). Instituto Brasileiro de Geografia e Estatística. Bases cartográficas contínuas do Brasil. Escala 1:250.000. Rio Janeiro. https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html?=&t=downloads. Accessed 25 June 2019.
IBGE. (2021). Instituto Brasileiro de Geografia e Estatística. Bases Cartográficas Contínuas. Escala 1:250,000 https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html?=&t=downloads. Accessed 15 Dec 2021.
IGAM. (2020). Instituto Mineiro de Gestão das Águas. Portal InfoHidro. http://repositorioigam.meioambiente.mg.gov.br. Accessed 10 Mar 2020.
IGAM. (2021). Instituto Mineiro de Gestão das Águas. Avaliação da qualidade das águas superficiais de Minas Gerais em 2020: resumo executivo anual. IGAM, Belo Horizonte.
Iooss, B., Da Veiga, S., Janon, A., & Pujol, G. (2021). Sensitivity: Global sensitivity analysis of model outputs, R package version 1.26.0. https://cran.r-project.org/package=sensitivity. Accessed 18 June 2021.
IPCC. (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, USA. p.5, New York.
Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. Oxford University Press.
Jabbar, F. K., Grote, K., & Tucker, R. E. (2019). A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process (AHP) methodology: A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 1–17. https://doi.org/10.1007/s11356-019-06355-9
Jesus, E. T., Amorim, J. D. S., Junqueira, R., Viola, M. R., & de Mello, C. R. (2020). Meteorological and hydrological drought from 1987 to 2017 in Doce River Basin, Southeastern Brazil. RBRH, 25, 1–10. https://doi.org/10.1590/2318-0331.252020190181
Kamran, M., Bian, J., Li, A., Lei, G., Nan, X., & Jin, Y. (2021). Investigating eco-environmental vulnerability for China-Pakistan economic corridor key sector Punjab using multi-sources geo-information. ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi10090625
Katipoglu, O. M., Acar, R., & Şenocak, S. (2021). Spatio-temporal analysis of meteorological and hydrological droughts in the Euphrates Basin, Turkey. Water Science and Technology: Water Supply, 21(4), 1657–1673. https://doi.org/10.2166/WS.2021.019
Kazemi, H., & Akinci, H. (2018). A land use suitability model for rainfed farming by multi-criteria decision-making analysis (MCDA) and geographic information system (GIS). Ecological Engineering, 116(March), 1–6. https://doi.org/10.1016/j.ecoleng.2018.02.021
KC, U., Aryal, J., Garg, S., & Hilton, J. (2021). Global sensitivity analysis for uncertainty quantification in fire spread models. Environmental Modelling & Software, 143, 105110. https://doi.org/10.1016/J.ENVSOFT.2021.105110
Kong, F., Ban, Y., Yin, H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 95, 132–142. https://doi.org/10.1016/J.ENVSOFT.2017.06.021
Lepsch, I. F., Bellinazzi, J. R., Bertolini, D., & Espíndola, C. R. (1991). Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Sociedade Brasileira de Ciência do Solo, 175p.
Liou, Y.-A., Nguyen, A. K., & Li, M.-H. (2017). Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecological Indicators, 80, 52–65. https://doi.org/10.1016/J.ECOLIND.2017.04.055
Liu, D., Cao, C., Dubovyk, O., Tian, R., Chen, W., Zhuang, Q., Zhao, Y., & Menz, G. (2017). Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China. Ecological Indicators, 73, 612–625. https://doi.org/10.1016/J.ECOLIND.2016.08.031
Liu, Y. F., Liu, Y., Shi, Z. H., López-Vicente, M., & Wu, G. L. (2020). Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. CATENA, 195, 104787. https://doi.org/10.1016/J.CATENA.2020.104787
Luu, C., Von Meding, J., & Kanjanabootra, S. (2018). Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90(3), 1031–1050. https://doi.org/10.1007/S11069-017-3083-0
Lyra, B. U., & Rigo, D. (2019). Deforestation impact on discharge regime in the Doce River basin. Revista Ambiente & Água. https://doi.org/10.4136/AMBI-AGUA.2370
Macedo, D. R., Hughes, R. M., Kaufmann, P. R., & Callisto, M. (2018). Development and validation of an environmental fragility index (EFI) for the neotropical savannah biome. Science of the Total Environment, 635, 1267–1279. https://doi.org/10.1016/j.scitotenv.2018.04.216
Magalhães, I. B., de Barros, C., Nogueira, G. C., Lage Alves, I. S., Calijuri, M. L., Lorentz, J. F., & SDC, A. (2020). Site suitability for photovoltaic energy expansion: A Brazilian’s high demand states study case. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2020.100341
Mansour, Z., Yanick, T., Aissa, S., Soraya, R., Abderahmane, H., Abdelkader, A., Abdelkader, K., Zahéra, S., Souad, M., & Kacem, M. (2021). The susceptibility analysis of landslide using bivariate and multivariate modeling techniques in western Algeria: Case of Fergoug watershed (Beni-Chougrane Mountains). Arabian Journal of Geosciences, 14(19), 1–19. https://doi.org/10.1007/S12517-021-07919-1
MapBiomas. (2021a). Projeto MapBiomas Coleção 6 - Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://mapbiomas.org/. Accessed 10.5.21.
MapBiomas. (2021b). Projeto MapBiomas: Qualidade de Pastagens, versão 1.1.0. http://mapbiomas.org. Accessed 25 Oct 2021.
Mihi, A., Benarfa, N., & Arar, A. (2020). Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing. Applied Geomatics, 12(2), 179–191.
Mondal, S. (2020). Modeling the spatial pattern of household quality of living in West Bengal: An approach of hotspot and cluster analysis. Modeling Earth Systems and Environment, 6(2), 833–851. https://doi.org/10.1007/s40808-020-00711-2
Monteiro, L. I. B., Pruski, F. F., Calegario, A. T., Oliveira, A. N. G., & Pereira, S. B. (2018). Methodology for payment for ecosystem services based on the concept of land use and management capability. Soil Use and Management, 34(4), 515–524. https://doi.org/10.1111/sum.12442
Moonga, G., Chisola, M. N., Berger, U., Nowak, D., Yabe, J., Nakata, H., Nakayama, S., Ishizuka, M., & Bose-O’Reilly, S. (2022). Geospatial approach to investigate spatial clustering and hotspots of blood lead levels in children within Kabwe, Zambia. Environmental Research, 207, 112646. https://doi.org/10.1016/J.ENVRES.2021.112646
Morozesk, M., Souza, I. D. C., Fernandes, M. N., & Soares, D. C. F. (2021). Airborne particulate matter in an iron mining city: Characterization, cell uptake and cytotoxicity effects of nanoparticles from PM2.5, PM10 and PM20 on human lung cells. Environmental Advances, 6, 100125. https://doi.org/10.1016/J.ENVADV.2021.100125
NASA, J. (2020). NASADEM Merged DEM Global 1 arc second V001 . NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001. Accessed 28 July 2023.
Nascimento, A. R. V. J. D., Cunha, G. K. G., Nascimento, C. W. A. D., & Cunha, K. P. V. D. (2021). Assessing soil quality and heavy metal contamination on scheelite mining sites in a tropical semi-arid setting. Water, Air, and Soil Pollution, 232(9), 1–15. https://doi.org/10.1007/s11270-021-05299-6
Nguyen, A. K., Liou, Y.-A., Li, M.-H., & Tran, T. A. (2016). Zoning eco-environmental vulnerability for environmental management and protection. Ecological Indicators, 69, 100–117. https://doi.org/10.1016/j.ecolind.2016.03.026
Nguyen, K.-A., & Liou, Y.-A. (2019). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the Total Environment, 664, 995–1004. https://doi.org/10.1016/J.SCITOTENV.2019.01.407
Pineda Rojas, A. L., & Bikiel, D. E. (2019). Global and local sensitivity analysis of urban background ozone modelled with a simplified photochemical scheme. Atmospheric Environment, 213, 199–206. https://doi.org/10.1016/J.ATMOSENV.2019.06.014
Poleto, C., Bortoluzzi, E. C., Charlesworth, S. M., & Merten, G. H. (2009). Urban sediment particle size and pollutants in Southern Brazil. Journal of Soils and Sediments, 9(4), 317–327. https://doi.org/10.1007/s11368-009-0102-0
Progênio, M. F., da Costa Filho, F. A. M., Crispim, D. L., Raiol Souza, M. J., Pimentel da Silva, G. D., & Fernandes, L. L. (2020). Ranking sustainable areas for the development of tidal power plants: A case study in the northern coastline of Brazil. International Journal of Energy Research, 44(12), 9772–9786. https://doi.org/10.1002/er.5716
Pruski, F. F. (2009). Conservação de solo e água (2nd ed.). Editora UFV, Viçosa, 279 p.
Purinton, B., & Bookhagen, B. (2021). Beyond vertical point accuracy: Assessing inter-pixel consistency in 30 m global DEMs for the arid Central Andes. Frontiers in Earth Science, 9, 1–24. https://doi.org/10.3389/feart.2021.758606
Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/J.EJRS.2015.02.002
Reis, D. A. D., Nascimento, L. P., Abreu, A. T. D., Nalini Júnior, H. A., Roeser, H. M. P., & Santiago, A. D. F. (2020). Geochemical evaluation of bottom sediments affected by historic mining and the rupture of the Fundão dam, Brazil. Environmental Science and Pollution Research, 27(4), 4365–4375. https://doi.org/10.1007/s11356-019-07119-1
Ribeiro, S. M. C., Rajão, R., Nunes, F., Assis, D., Neto, J. A., Marcolino, C., Lima, L., Rickard, T., Salomão, C., & Filho, B. S. (2020). A spatially explicit index for mapping Forest Restoration Vocation (FRV) at the landscape scale: Application in the Rio Doce basin, Brazil. Science of the Total Environment, 744, 140647. https://doi.org/10.1016/j.scitotenv.2020.140647
Rodrigues, A. L. M., Reis, G. B., dos Santos, M. T., da Silva, D. D., dos Santos, V. J., de Siqueira Castro, J., & Calijuri, M. L. (2019). Influence of land use and land cover’s change on the hydrological regime at a Brazilian southeast urbanized watershed. Environmental Earth Sciences, 78(20), 595. https://doi.org/10.1007/s12665-019-8601-9
Ross, J. L. S. (1994). Análise empírica da fragilidade de ambientes naturais e antropizados. Geography Department, University of Sao Paulo, 8, 63–74.
Rudorff, N., Rudorff, C. M., Kampel, M., & Ortiz, G. (2018). Remote sensing monitoring of the impact of a major mining wastewater disaster on the turbidity of the Doce River plume off the eastern Brazilian coast. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 349–361. https://doi.org/10.1016/J.ISPRSJPRS.2018.02.013
Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International.
Saaty, T. L. (1989). The analytic hierarchy process. In P. T. Golden, B.L., Wasil, E.A., Harker (Ed.), Group decision making and the AHP (pp. 59–67). Springer.
Sahoo, S., Dhar, A., & Kar, A. (2016). Environmental vulnerability assessment using grey analytic hierarchy process based model. Environmental Impact Assessment Review, 56, 145–154. https://doi.org/10.1016/j.eiar.2015.10.002
Sahoo, S., Dhar, A., Debsarkar, A., & Kar, A. (2019). Future scenarios of environmental vulnerability mapping using grey analytic hierarchy process. Natural Resources Research, 28(4), 1461–1483. https://doi.org/10.1007/s11053-019-09462-z
Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2), 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114, 29–39. https://doi.org/10.1016/J.ENVSOFT.2019.01.012
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. The primer. John Wiley & Sons Ltd.
Silva, A. C. O., Fonseca, L. M. G., Körting, T. S., & Escada, M. I. S. (2020). A spatio-temporal Bayesian network approach for deforestation prediction in an Amazon rainforest expansion frontier. Spatial Statistics, 35, 100393. https://doi.org/10.1016/j.spasta.2019.100393
Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407–414.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280.
Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the analytic hierarchy process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220–233. https://doi.org/10.1016/j.ecolind.2016.12.043
Uliana, E. M., Silva, D. D., Moreira, M. C., & Pereira, D. R. (2019). Global sensitivity analysis methods applied to hydrologic modeling with the SAC-SMA model. Engenharia Agrícola, Jaboticabal, 39(1), 65–74.
Vergilio, C. D. S., Lacerda, D., Souza, T. D. S., Oliveira, B. C. V. D., Fioresi, V. S., Souza, V. V. D., Rodrigues, G. D. R., Barbosa, M. K. D. A. M., Sartori, E., Rangel, T. P., Almeida, D. Q. R. D., Almeida, M. G. D., Thompson, F., & Rezende, C. E. D. (2021). Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil). Science of the Total Environment, 756, 143697. https://doi.org/10.1016/J.SCITOTENV.2020.143697
Vieira, R. M. D. S. P., Tomasella, J., Cunha, A. P. M. D. A., Barbosa, A. A., Pompeu, J., Ferreira, Y., Santos, F. C., Alves, L. M., & Ometto, J. (2023). Socio-environmental vulnerability to drought conditions and land degradation: An assessment in two northeastern Brazilian river basins. Sustainability (switzerland). https://doi.org/10.3390/su15108029
Wei, W., Shi, S., Zhang, X., Zhou, L., Xie, B., Zhou, J., & Li, C. (2020). Regional-scale assessment of environmental vulnerability in an arid inland basin. Ecological Indicators, 109, 105792. https://doi.org/10.1016/j.ecolind.2019.105792
Wolff, W., Duarte, S. N., & Fernandes, R. D. M. (2020). Spatialization of the annual and seasonal average precipitations in the state of Santa Catarina, Brazil. Journal of South American Earth Sciences, 103, 102735. https://doi.org/10.1016/j.jsames.2020.102735
Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0
Zhang, S., Fan, W., Li, Y., & Yi, Y. (2017). The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of the Total Environment, 574, 34–45. https://doi.org/10.1016/j.scitotenv.2016.09.024
Zhao, J., Ji, G., Tian, Y., Chen, Y., & Wang, Z. (2018). Environmental vulnerability assessment for mainland China based on entropy method. Ecological Indicators, 91, 410–422. https://doi.org/10.1016/j.ecolind.2018.04.016
Zimmer, A. H., Macedo, M. C. M., Kichel, A. N., & Almeida, R. G. D. (2012). Degradação, recuperação e renovação de pastagens. Embrapa Gado de Corte, p. 42. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/77431/1/DOC189.pdf. Accessed 25 Oct 2020
Zou, T., & Yoshino, K. (2017). Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling region, China. Ecological Indicators, 78, 405–415.
Funding
This study was financed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process no. CNPq 140418/2020–2, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
Author information
Authors and Affiliations
Contributions
Jasmine Alves Campos: conceptualization, methodology, writing-original draft. Demetrius David da Silva: methodology, writing-review and editing. Elpídio Inácio Fernandes Filho: writing-review and editing. Gabrielle Ferreira Pires: review and editing. Ricardo Santos Silva Amorim: review and editing. Frederico Carlos Martins de Menezes Filho: review and editing. Celso Bandeira de Melo Ribeiro: review and editing. Eduardo Morgan Uliana: review and editing. Uilson Ricardo Venâncio Aires: review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Campos, J.A., da Silva, D.D., Fernandes Filho, E.I. et al. Environmental vulnerability assessment of the Doce River basin, southeastern Brazil. Environ Monit Assess 195, 1119 (2023). https://doi.org/10.1007/s10661-023-11782-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-11782-w