TOPICS
Search

Faulhaber's Formula


In a rare 1631 work entitled Academiae Algebrae, J. Faulhaber published a number of formulae for power sums of the first n positive integers. A detailed analysis of Faulhaber's work may be found in Knuth (1993) and, with a few amendments, in Knuth (2001).

Among the results presented by Faulhaber (without any indication of how they were derived) were the sums of odd powers

sum_(k=1)^(n)k=N
(1)
sum_(k=1)^(n)k^3=N^2
(2)
sum_(k=1)^(n)k^5=1/3(4N^3-N^2)
(3)
sum_(k=1)^(n)k^7=1/3(6N^4-4N^3+N^2)
(4)
sum_(k=1)^(n)k^9=1/5(16N^5-20N^4+12N^3-3N^2)
(5)
sum_(k=1)^(n)k^(11)=1/3(16N^6-32N^5+34N^4-20N^3+5N^2)
(6)
sum_(k=1)^(n)k^(13)=1/(105)(960N^7-2800N^6+4592N^5-4720N^4+2764N^3-691N^2)
(7)
sum_(k=1)^(n)k^(15)=1/3(48N^8-192N^7+448N^6-704N^5+718N^4-420N^3+105N^2)
(8)
sum_(k=1)^(n)k^(17)=1/(45)(1280N^9-6720N^8+21120N^7-46880N^6+72912N^5-74220N^4+43404N^3-10851N^2)
(9)

where N=(n^2+n)/2. While Faulhaber believed that analogous polynomials in N with alternating signs would continue to exist for all powers p, a rigorous proof was first published by Jacobi (1834; Knuth 1993).

The case sum_(k=1)^(n)k^3=N^2 is sometimes known as Nicomachus's theorem.

Expressing such sums directly in terms of n for powers p=1, ..., 10 gives

sum_(k=1)^(n)k=1/2(n^2+n)
(10)
sum_(k=1)^(n)k^2=1/6(2n^3+3n^2+n)
(11)
sum_(k=1)^(n)k^3=1/4(n^4+2n^3+n^2)
(12)
sum_(k=1)^(n)k^4=1/(30)(6n^5+15n^4+10n^3-n)
(13)
sum_(k=1)^(n)k^5=1/(12)(2n^6+6n^5+5n^4-n^2)
(14)
sum_(k=1)^(n)k^6=1/(42)(6n^7+21n^6+21n^5-7n^3+n)
(15)
sum_(k=1)^(n)k^7=1/(24)(3n^8+12n^7+14n^6-7n^4+2n^2)
(16)
sum_(k=1)^(n)k^8=1/(90)(10n^9+45n^8+60n^7-42n^5+20n^3-3n)
(17)
sum_(k=1)^(n)k^9=1/(20)(2n^(10)+10n^9+15n^8-14n^6+10n^4-3n^2)
(18)
sum_(k=1)^(n)k^(10)=1/(66)(6n^(11)+33n^(10)+55n^9-66n^7+66n^5-33n^3+5n).
(19)

While Faulhaber was not aware of (and did not discover) Bernoulli numbers or harmonic numbers, a general formula for the sum of k^p for k from 1 to n can be given in closed form by

sum_(k=1)^(n)k^p=H_(n,-p)
(20)
=1/(p+1)sum_(i=1)^(p+1)(-1)^(delta_(ip))(p+1; i)B_(p+1-i)n^i,
(21)

where H_(n,r) is a generalized harmonic number, delta_(ip) is the Kronecker delta, (n; i) is a binomial coefficient, and B_i is the ith Bernoulli number.

In his work, Faulhaber also considered and (correctly) claimed that the r-fold summation of 1^p, 2^p, ..., n^p is a polynomial in n(n+r) when p=1 3, 5, .... Additional details are given by Knuth (1993, 2001).

Any of these power sums might be termed a "Faulhaber sum."


See also

Harmonic Number, Nicomachus's Theorem, Power, Power Sum, Square Triangular Number, Sum

Explore with Wolfram|Alpha

References

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 106, 1996.Edwards, A. W. F. "A Quick Route to Sums of Powers." Amer. Math. Monthly 93, 451-455, 1986.Faulhaber, J. Academia Algebræ, Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden. Augspurg [sic], Germany: Johann Ulrich Schönigs, 1631.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 82, 2003.Jacobi, C. G. J. "De usu legitimo formulae summatoriae Maclaurinianae." J. reine angew. Math. 12, 263-272, 1834.Knuth, D. E. "Johann Faulhaber and Sums of Powers." Math. Comput. 61, 277-294, 1993.Knuth, D. E. Ch. 4 in Selected Papers on Discrete Mathematics. Cambridge, England: Cambridge University Press, 2001.Schneider, I. Johannes Faulhaber 1580-1635: Rechenmeister in einer Welt des Umbruchs. Basel, Switzerland: Birkhäuser, 1993.Sloane, N. J. A. Sequence A000537 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Faulhaber's Formula

Cite this as:

Weisstein, Eric W. "Faulhaber's Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FaulhabersFormula.html

Subject classifications

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy