TOPICS
Search

Hermite Polynomial


HermiteH

The Hermite polynomials H_n(x) are set of orthogonal polynomials over the domain (-infty,infty) with weighting function e^(-x^2), illustrated above for n=1, 2, 3, and 4. Hermite polynomials are implemented in the Wolfram Language as HermiteH[n, x].

The Hermite polynomial H_n(z) can be defined by the contour integral

 H_n(z)=(n!)/(2pii)∮e^(-t^2+2tz)t^(-n-1)dt,
(1)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985, p. 416).

The first few Hermite polynomials are

H_0(x)=1
(2)
H_1(x)=2x
(3)
H_2(x)=4x^2-2
(4)
H_3(x)=8x^3-12x
(5)
H_4(x)=16x^4-48x^2+12
(6)
H_5(x)=32x^5-160x^3+120x
(7)
H_6(x)=64x^6-480x^4+720x^2-120
(8)
H_7(x)=128x^7-1344x^5+3360x^3-1680x
(9)
H_8(x)=256x^8-3584x^6+13440x^4-13440x^2+1680
(10)
H_9(x)=512x^9-9216x^7+48384x^5-80640x^3+30240x
(11)
H_(10)(x)=1024x^(10)-23040x^8+161280x^6-403200x^4+302400x^2-30240.
(12)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2, 4; -12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343).

The values H_n(0) may be called Hermite numbers.

The Hermite polynomials are a Sheffer sequence with

g(t)=e^(t^2/4)
(13)
f(t)=1/2t
(14)

(Roman 1984, p. 30), giving the exponential generating function

 exp(2xt-t^2)=sum_(n=0)^infty(H_n(x)t^n)/(n!).
(15)

Using a Taylor series shows that

H_n(x)=[(partial/(partialt))^nexp(2xt-t^2)]_(t=0)
(16)
=[e^(x^2)(partial/(partialt))^ne^(-(x-t)^2)]_(t=0).
(17)

Since partialf(x-t)/partialt=-partialf(x-t)/partialx,

H_n(x)=(-1)^ne^(x^2)[(partial/(partialx))^ne^(-(x-t)^2)]_(t=0)
(18)
=(-1)^ne^(x^2)(d^n)/(dx^n)e^(-x^2).
(19)

Now define operators

O^~_1=-e^(x^2)d/(dx)e^(-x^2)
(20)
O^~_2=e^(x^2/2)(x-d/(dx))e^(-x^2/2).
(21)

It follows that

O^~_1f=-e^(x^2)d/(dx)[fe^(-x^2)]
(22)
=2xf-(df)/(dx)
(23)
O^~_2f=e^(x^2/2)(x-d/(dx))[fe^(-x^2/2)]
(24)
=xf+xf-(df)/(dx)
(25)
=2xf-(df)/(dx),
(26)

so

 O^~_1=O^~_2,
(27)

and

 -e^(x^2)d/(dx)e^(-x^2)=e^(x^2/2)(x-d/(dx))e^(-x^2/2)
(28)

(Arfken 1985, p. 720), which means the following definitions are equivalent:

exp(2xt-t^2)=sum_(n=0)^(infty)(H_n(x)t^n)/(n!)
(29)
H_n(x)=(-1)^ne^(x^2)(d^n)/(dx^n)e^(-x^2)
(30)
H_n(x)=e^(x^2/2)(x-d/(dx))^ne^(-x^2/2)
(31)

(Arfken 1985, pp. 712-713 and 720).

The Hermite polynomials may be written as

H_n(z)=(2z)^n_2F_0(-1/2n,-1/2(n-1);;-z^(-2))
(32)
=2^nz^n(z^2)^(-n/2)U(-1/2n,1/2,z^2)
(33)

(Koekoek and Swarttouw 1998), where U(a,b,z) is a confluent hypergeometric function of the second kind, which can be simplified to

 H_n(z)=2^nU(-1/2n,1/2,z^2)
(34)

in the right half-plane R[z]>0.

The Hermite polynomials are related to the derivative of erf by

 H_n(z)=1/2(-1)^nsqrt(pi)e^(z^2)(d^(n+1))/(dz^(n+1))erf(z).
(35)

They have a contour integral representation

 H_n(x)=(n!)/(2pii)∮e^(-t^2+2tx)t^(-n-1)dt.
(36)

They are orthogonal in the range (-infty,infty) with respect to the weighting function e^(-x^2)

 int_(-infty)^inftyH_m(x)H_n(x)e^(-x^2)dx=delta_(mn)2^nn!sqrt(pi).
(37)

The Hermite polynomials satisfy the symmetry condition

 H_n(-x)=(-1)^nH_n(x).
(38)

They also obey the recurrence relations

 H_(n+1)(x)=2xH_n(x)-2nH_(n-1)(x)
(39)
 H_n^'(x)=2nH_(n-1)(x).
(40)

By solving the Hermite differential equation, the series

H_(2k)(x)=(-1)^k2^k(2k-1)!![1+sum_(j=1)^(k)((-4k)(-4k+4)...(-4k+4j-4))/((2j)!)x^(2j)]
(41)
=(-2)^k(2k-1)!!_1F_1(-k;1/2;x^2)
(42)
H_(2k+1)(x)=(-1)^k2^(k+1)(2k+1)!![x+sum_(j=1)^(k)((-4k)(-4k+4)...(-4k+4j-4))/((2j+1)!)x^(2j+1)]
(43)
=(-1)^k2^(k+1)(2k+1)!!x_1F_1(-k;3/2;x^2)
(44)

are obtained, where the products in the numerators are equal to

 (-4k)(-4k+4)...(-4k+4j-4)=4^j(-k)_j,
(45)

with (x)_n the Pochhammer symbol.

Let a set of associated functions be defined by

 u_n(x)=sqrt(a/(pi^(1/2)n!2^n))H_n(ax)e^(-a^2x^2/2),
(46)

then the u_n satisfy the orthogonality conditions

int_(-infty)^inftyu_n(x)(du_m)/(dx)dx={asqrt((n+1)/2) m=n+1; -asqrt(n/2) m=n-1; 0 otherwise
(47)
int_(-infty)^inftyu_m(x)u_n(x)dx=delta_(mn)
(48)
int_(-infty)^inftyu_m(x)xu_n(x)dx={1/asqrt((n+1)/2) m=n+1; 1/asqrt(n/2) m=n-1; 0 otherwise
(49)
int_(-infty)^inftyu_m(x)x^2u_n(x)dx={(sqrt(n(n-1)))/(2a^2) m=n-2; (2n+1)/(2a^2) m=n; (sqrt((n+1)(n+2)))/(2a^2) m=n+2; 0 m!=n!=n+/-2
(50)
int_(-infty)^inftye^(-x^2)H_alpha(x)H_beta(x)H_gamma(x)dx=sqrt(pi)(2^salpha!beta!gamma!)/((s-alpha)!(s-beta)!(s-gamma)!),
(51)

if alpha+beta+gamma=2s is even and s>=alpha, s>=beta, and s>=gamma. Otherwise, the last integral is 0 (Szegö 1975, p. 390). Another integral is

 int_(-infty)^inftyu_n(x)x^ru_m(x)dx={0   if r-n-m is odd; (r!)/((2a)^r)sqrt((2^(m+n))/(m!n!))sum_(p=max(0,-s))^(min(m,n))(n; p)(m; p)(p!)/(2^p(s+p)!)   otherwise,
(52)

where s=(r-n-m)/2 and (n; k) is a binomial coefficient (T. Drane, pers. comm., Feb. 14, 2006).

The polynomial discriminant is

 D_n=2^(3n(n-1)/2)product_(k=1)^nk^k
(53)

(Szegö 1975, p. 143), a normalized form of the hyperfactorial, the first few values of which are 1, 32, 55296, 7247757312, 92771293593600000, ... (OEIS A054374). The table of resultants is given by {0}, {-8,0}, {0,-2048,0}, {192,16384,28311552,0}, ... (OEIS A054373).

Two interesting identities involving H_n(x+y) are given by

 sum_(k=0)^n(n; k)H_k(x)H_(n-k)(y)=2^(n/2)H_n(2^(-1/2)(x+y))
(54)

and

 sum_(k=0)^n(n; k)H_k(x)(2y)^(n-k)=H_n(x+y)
(55)

(G. Colomer, pers. comm.). A very pretty identity is

 H_n(x+y)=(H+2y)^n,
(56)

where H^k=H_k(x) (T. Drane, pers. comm., Feb. 14, 2006).

They also obey the sum

 sum_(k=0)^n(-1)^(n-k)(n; k)H_n(k)=2^nn!,
(57)

as well as the more complicated

 H_n(x)=H_n+sum_(m=0)^(|_n/2_|)[sum_(k=1)^(n-2m)(-1)^kS(n-2m,k)(-x)_k]×((-1)^m2^(n-2m)n!)/((n-2m)!m!),
(58)

where H_n=H_n(0) is a Hermite number, S(n,k) is a Stirling number of the second kind, and (x)_n is a Pochhammer symbol (T. Drane, pers. comm., Feb. 14, 2006).

A class of generalized Hermite polynomials gamma_n^m(x) satisfying

 e^(mxt-t^m)=sum_(n=0)^inftygamma_n^m(x)t^n
(59)

was studied by Subramanyan (1990). A class of related polynomials defined by

 h_(n,m)=gamma_n^m((2x)/m)
(60)

and with generating function

 e^(2xt-t^m)=sum_(n=0)^inftyh_(n,m)(x)t^n
(61)

was studied by Djordjević (1996). They satisfy

 H_n(x)=n!h_(n,2)(x).
(62)

Roman (1984, pp. 87-93) defines a generalized Hermite polynomial H_n^((nu))(x) with variance nu.

A modified version of the Hermite polynomial is sometimes (but rarely) defined by

 He_n(x)=2^(-n/2)H_n(x/(sqrt(2)))
(63)

(Jörgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and Stegun 1972, p. 778). The first few of these polynomials are given by

He_1(x)=x
(64)
He_2(x)=x^2-1
(65)
He_3(x)=x^3-3x
(66)
He_4(x)=x^4-6x^2+3
(67)
He_5(x)=x^5-10x^3+15x.
(68)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1; -1, 1; -3, 1; 3, -6, 1; 15, -10, 1; ... (OEIS A096713). The polynomial He_n(x) is the independence polynomial of the complete graph K_n.


See also

Hermite Number, Mehler's Hermite Polynomial Formula, Multivariate Hermite Polynomial, Weber Functions

Related Wolfram sites

http://functions.wolfram.com/Polynomials/HermiteH/, http://functions.wolfram.com/HypergeometricFunctions/HermiteHGeneral/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.Andrews, G. E.; Askey, R.; and Roy, R. "Hermite Polynomials." §6.1 in Special Functions. Cambridge, England: Cambridge University Press, pp. 278-282, 1999.Arfken, G. "Hermite Functions." §13.1 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 712-721, 1985.Chebyshev, P. L. "Sur le développement des fonctions à une seule variable." Bull. ph.-math., Acad. Imp. Sc. St. Pétersbourg 1, 193-200, 1859.Chebyshev, P. L. Oeuvres, Vol. 1. New York: Chelsea, pp. 49-508, 1987.Djordjević, G. "On Some Properties of Generalized Hermite Polynomials." Fib. Quart. 34, 2-6, 1996.Hermite, C. "Sur un nouveau développement en série de fonctions." Compt. Rend. Acad. Sci. Paris 58, 93-100 and 266-273, 1864. Reprinted in Hermite, C. Oeuvres complètes, tome 2. Paris, pp. 293-308, 1908.Hermite, C. Oeuvres complètes, tome 3. Paris: Hermann, p. 432, 1912.Iyanaga, S. and Kawada, Y. (Eds.). "Hermite Polynomials." Appendix A, Table 20.IV in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1479-1480, 1980.Jeffreys, H. and Jeffreys, B. S. "The Parabolic Cylinder, Hermite, and Hh Functions" §23.08 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 620-622, 1988.Jörgensen, N. R. Undersögler over frekvensflader og korrelation. Copenhagen, Denmark: Busck, 1916.Koekoek, R. and Swarttouw, R. F. "Hermite." §1.13 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 50-51, 1998.Magnus, W. and Oberhettinger, F. Ch. 5 in Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd ed. Berlin: Springer-Verlag, 1948.Roman, S. "The Hermite Polynomials." §4.2.1 in The Umbral Calculus. New York: Academic Press, pp. 30 and 87-93, 1984.Rota, G.-C.; Kahaner, D.; Odlyzko, A. "Hermite Polynomials." §10 in "On the Foundations of Combinatorial Theory. VIII: Finite Operator Calculus." J. Math. Anal. Appl. 42, 684-760, 1973.Sansone, G. "Expansions in Laguerre and Hermite Series." Ch. 4 in Orthogonal Functions, rev. English ed. New York: Dover, pp. 295-385, 1991.Slater, L. J. Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press, 1960.Sloane, N. J. A. Sequences A054373, A054374, A059343, and A096713 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "The Hermite Polynomials H_n(x)." Ch. 24 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 217-223, 1987.Subramanyan, P. R. "Springs of the Hermite Polynomials." Fib. Quart. 28, 156-161, 1990.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.

Referenced on Wolfram|Alpha

Hermite Polynomial

Cite this as:

Weisstein, Eric W. "Hermite Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HermitePolynomial.html

Subject classifications

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy