login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000574
Coefficient of x^5 in expansion of (1 + x + x^2)^n.
(Formerly M3011 N1219)
12
3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510
OFFSET
3,1
COMMENTS
If Y is a 3-subset of an n-set X then, for n>=7, a(n-4) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Trinomial Coefficient
FORMULA
G.f.: x^3*(3-2*x)/(1-x)^6.
a(n) = 3*binomial(n+2,5) - 2*binomial(n+1,5).
a(n) = A111808(n,5) for n>4. - Reinhard Zumkeller, Aug 17 2005
a(n) = binomial(n+1, 4)*(n+12)/5 = 3*b(n-3)-2*b(n-4), with b(n)=binomial(n+5, 5); cf. A000389.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Jun 10 2012
a(n) = 3*binomial(n, 3) + 4*binomial(n, 4) + binomial(n, 5). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 5 if 5<n else 2*n-5. - Peter Luschny, May 10 2016
a(n) = Sum_{i=1..n-1} A000217(i)*A055998(n-1-i). - Bruno Berselli, Mar 05 2018
E.g.f.: exp(x)*x^3*(60 + 20*x + x^2)/120. - Stefano Spezia, Jul 09 2023
MAPLE
A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
seq(3*binomial(n+2, 5)-2*binomial(n+1, 5), n=3..100); # Robert Israel, Aug 04 2015
A000574 := n -> GegenbauerC(`if`(5<n, 5, 2*n-5), -n, -1/2):
seq(simplify(A000574(n)), n=3..20); # Peter Luschny, May 10 2016
MATHEMATICA
CoefficientList[Series[(3-2*x)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 10 2012 *)
PROG
(Magma) [3*Binomial(n+2, 5)-2*Binomial(n+1, 5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012
(PARI) x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017
CROSSREFS
Column m=5 of (1, 3) Pascal triangle A095660.
Sequence in context: A346556 A004320 A089363 * A041233 A055194 A190730
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Oct 02 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy